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1. Introduction 

 In examining repeated games with signals converging to diffusion processes, the  

equilibrium cutpoint that determines the probability of punishment may grow 

asymptotically relative to the standard error of the signal, as for example, in Fudenberg 

and Levine [2007]. The standard central limit theorem does not provide a useful estimate 

of the way that this probability converges to that of the corresponding normal 

distribution, but in some cases a large deviations version of the central limit theorem can 

be used. The most useful result that we have been able to find is that of Feller [1972], 

however this applies only to i.i.d. random variables, and not to triangular arrays. This 

note provides the additional uniformity assumptions needed to adapt the Feller proof to 

the case of triangular arrays and shows how to adapt the proof.  

2. The Setup 

As indicated, we extend an argument concerning i.i.d. random variables from Feller 

[1972, pp. 548-553] to the case of triangular arrays. We adopt Feller’s notation to the 

maximum extent feasible. We suppose that we are given for each n  a sequence 

n
iZ 1, ,i n= …  of . . .i i d  random variables with zero mean, variance 2

nσ  and distribution 

nF . We define 

 
1

n n
n ii
z Z

=
=∑ . 

This has distribution nF ∗ , while the normalized sum /n nz nσ  has distribution nF . 

Let ,φΦ  respectively denote the c.d.f. and density of the standard normal 

distribution. Recall that the cumulant generating function
2
 is defined as the logarithm of 

the generating function 

 ( ) log ( )x
n ne F dxζψ ζ

∞

−∞
≡ ∫ . 

By the usual properties of the moment generating function, nz  has cumulant generating 

function ( )nnψ ζ . The derivatives of the cumulant generating function at zero are the 

corresponding central moments: '(0) , ''(0) var( )n n
n i n iEZ Zψ ψ= =  and so forth. Our 

goal is to prove the following result: 

                                                 
2
 Also called the bilateral Laplace transform. 
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Large Deviations Theorem: Suppose 

1. For some 0s >  and all 0 sζ≤ ≤  there is a continuous function 2( ) 0ψ ζ >  and 

constant 0B >  such that 

 2
0lim sup ''( ) ( ) 0n s nζ ψ ζ ψ ζ→∞ ≤ ≤ − →  

and that 

 2
0sup | '''( ) |,| ''''( ) || '''''( ) |s n n n Bζ ψ ζ ψ ζ ζ ψ ζ ζ≤ ≤ <  

2. nσ σ→ , 
3

3 3
i

n nM E Z M≡ → < ∞  

3. 1/6 0nn x− →  

4. nx → ∞  

Then 

 
1 ( )

1
1 ( )

n
n

n

F x

x

−
→

−Φ
 

3. Basic Facts 

Our proof will make use of some basic facts. The first is a more standard version 

of the central limit theorem, also from Feller.  

Berry-Esseen Theorem:
3
 for all x  

 
3

3

9 | |
| ( ) ( ) |

n
in

n

E Z
F x x

nσ
−Φ ≤ . 

We also use some basic results about the standard normal distribution. 

Lemma 1: 

1. 
1 ( )

lim 1
1 ( )x

x x

x

φ−

→∞ =
−Φ

 

2. there is a constant K  such that if 0x > , 11 ( ) ( )x Kx xφ−−Φ ≤  

                                                 
3
 Feller uses the constant 3 instead of 9; Wolfram gives 33/4 which is slightly smaller than 9. 
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proof:  

1) Apply L’Hopital’s rule 

 
1 2( ) (1 ) ( )

lim lim 1
1 ( ) ( )x x

x x x x

x x

φ φ

φ

− −

→∞ →∞
− +

= =
−Φ −

. 

2) From property 1, there is an x  such that for x x≥ , 11 ( ) 2 ( )x x xφ−−Φ ≤ . On the 

other hand, for 0 x x≤ ≤  we have 

  1
0 1

1 ( )
1 ( ) max ( )

( )
x x

x
x x x

x x
φ

φ

−
≤ ≤ −

 − Φ
 − Φ ≤
  

 

so that we may take 

 0 1

1 ( )
max{2, max }

( )
x x

x
K

x xφ
≤ ≤ −

 − Φ
 =
  

. 

� 

Lemma 2: If Assumptions 1 and 2 of the Large Deviations Theorem hold then 

2 2(0)ψ σ= . 

Proof: Because it is the cumulant generating function for n
iZ , 2''(0)n nψ σ= . By 

Assumption 2 2
nσ σ→ . By Assumption 1 if 0ζ →  then 2''( ) (0)nψ ζ ψ→ . But by a 

diagonalization argument we can then choose 0ζ →  sufficiently fast that 2( )nψ ζ σ→ . 

� 

4. The “Associated” Distribution 

Feller’s proof replaces the normalized sum /n nz nσ  and its cdf nF ∗  with  a 

different random variable. This “associated” random variable has probability measure 

given by the cdf n
sV
∗  where s  is a positive constant and 

 ( )

0
( ) ( )n

x
n n s sy n
sV x e e dF yψ∗ − ∗≡ ∫  

Notice that this has a much thicker right tail than nF ∗ . The idea is that by applying a 

version of the CLT, the Berry-Esseen Theorem above, to nV ∗ , we can pull this back to 

the thinner tailed nF ∗  to get a bound that will apply even for large values of x . 

First we develop some basic properties of n
sV
∗  

Lemma 3:  
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 ( ) 1n
sdV x

∞ ∗

−∞
=∫  

Proof: 

 
log ( )( ) ( )( ) ( )

sx n

n n
e dF xn n s sx n n s

sdV x e e dF x e eψ ψ

∞ ∗
−∞

∞ ∞∗ − ∗ −

−∞ −∞

∫≡ =∫ ∫  

and the result follows from the fact that nz  has cumulant generating function nnψ . 

� 

Lemma 4: n
sV
∗  has mean '( )n sψ  and variance ''( )n sψ . 

Proof: Follows by computing the cumulant generating function for nV ∗  

 
*

( )( ) log ( ) ( ) log ( )

( ) ( )

n
s

x n s x n
s nV

n n

e dV x n s e dF x

n s n s

ζ ζψ ζ ψ

ψ ψ ζ

∞ ∞∗ + ∗

−∞ −∞
= = − +

= − + +

∫ ∫  

� 

Lemma 5: n
sV
∗  is the cumulative distribution function of the sum of i.i.d. random 

variables with distribution  

 ( )

0
( ) ( )n

x
s sy

ns nV x e e dF yψ−≡ ∫  

Proof: This follows from the basic properties of the exponential function: multiplying a 

density by an exponential of the integrand commutes with the taking of convolutions.
4
 

� 

5. Sketch of the Proof 

We want to give a sufficient condition for 

 
1 ( )

1 0
1 ( )

n
n

n

F x

x

−
− →

−Φ
 as nx →∞ . 

The idea is to introduce an intermediate quantity nA  and give a sufficient condition that 

 
1 ( )

1 0
n
n

n

F x

A

−
− →  

                                                 
4
 Note the basic one-tailed nature of the argument: we can thicken the tail while preserving convolutions 

only if we multiply by an exponential. While this thickens one tail, it also thins the other tail. 
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and 

 1 0
1 ( )

n

n

A

x
− →

−Φ
, 

the two together then giving the desired result. The first step will follow by applying a 

version of the CLT, the Berry-Esseen Theorem, which gives a precise rate of 

convergence, to the thick tailed nV ∗ . The second step shows that when we thicken the 

tail by multiplying by a carefully chosen exponential we do not shift *n
sV  too much to 

the right. To carry out this second step we need the key condition 1/6 0nn x− → . 

 

6. Proof of the Main Theorem 

6.1. First step 

Invert the relationship ( )( ) ( )nn n s sx n
sdV x e e dF xψ∗ − ∗=  to find 

( )( ) ( )n n nn n s s x n
sdF x e e dV xψ∗ − ∗= , and in particular 

 ( )1 ( ) 1 ( ) ( )n

n n

n n n s sy n
n n n s

x n
F x F x n e e dV yψ

σ
σ

∞∗ − ∗− = − = ∫ . 

6.2. Second step 

Choose ns  to depend on n  (and thus indirectly on ,n nxσ ) so that 

'( )n n n nx n n s=σ ψ , or equivalently 

 '( ) /n n n ns x n=ψ σ . 

Since 2 2
0lim sup ''( ) ( ) 0, ( ) 0n s nζ ψ ζ ψ ζ ψ ζ→∞ ≤ ≤ − = > , nσ σ→  and / 0nx n →  a 

solution in [0, ]s  exists for large enough n .  

Lemma 6: If Assumptions 1 and 2 of the Large Deviations Theorem hold then 0ns →  

and 2 2''( ) (0)n nsψ ψ σ→ = . Also 3 0nns →  if and only if Assumption 4, that is, 

1/6 0nn x− → . 

Proof: Because '(0) 0n

iEZψ = = , and '( ) /n n ns x nψ σ= , by the mean value theorem 

we may write ''( ) /n n n ns x n=ψ ζ σ  where [0, ]sζ ∈ . Then 

 
''( )
n n

n
n

x
s

n
=

σ

ψ ζ
. 
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From the basic assumption that nσ σ→  and / 0nx n →  it follows immediately that 

0ns → , and so 2''( ) (0)n ns →ψ ψ  by 2
0lim sup ''( ) ( ) 0n s nζ ψ ζ ψ ζ→∞ ≤ ≤ − → . 

 Now write  

 

31/6
3

''( )
n n

n
n

n x
ns

− =    
σ

ψ ζ
, 

this gives the final result. 

� 
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6.3. Third step 

Define the quantity nA  by replacing 
n

n
sV
∗  in the expression from step 1 

 ( ) ( )n n n

n
n n

n s s y n
s

x n
e e dV yψ

σ

∞ − ∗∫  

by a normal with mean '( )n nn sψ  and variance ''( )n nn sψ  

 
2( ) (1/2)( '( )) / ''( )1

2 ''( )
n n n n n n n

n n

n s s y y n s n s
n

x n n n

A e e e dy
n s

ψ ψ ψ

σ π ψ

∞ − − −≡ ∫  

We rewrite nA  in a more convenient form. Use the substitution 

 '( ) ''( )n n n ny n s t n s= +ψ ψ  

and the fact that the lower limit of integration '( )n n n nx n n s=σ ψ  to find 

 
2[ ( ) '( ) ] ''( ) (1/2)

0

1

2
n n n n n n n nn s s s ts n s t

nA e e dtψ ψ ψ

π

∞− − −= ∫  

Complete the square in the numerator to get 

 ( )2[ ( ) '( ) (1/2) ''( ) ] 1 ( ''( ))n n n n n n n nn s s s s s
n n n nA e s n s− += −Φψ ψ ψ ψ  

6.4. Fourth Step 

Use Lemmas 4 and 5 to apply the Berry-Esseen Theorem to 
n

n
sV
∗  and find for all 

y  

 
[ ]

3
3/2

'( ) 9
( )

''( ) ''( )
n

n n nn
s

n n n n

y n s M
V y

n s n s

ψ

ψ ψ

∗  − −Φ <  
 

where 3nM  is the third absolute central moment of 
nns

V .
5
 

6.5. Fifth Step 

How close is nA  to our target 1 ( )n
nF x− ? 

                                                 
5
 The parallel claim in Feller’s proof is the related but different inequality 

3
3

'( ) 9
( )

''( )
n nn

nn

y n s M
V y

nn s

ψ

σψ

∗  − −Φ <  
. This claim seems to be an incorrect application of the Berry-Esseen 

theorem  which requires the variance of nV  rather than 2
nσ  in the denominator 
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2

2

( ) ( ) (1/2)( '( )) / ''( )

( ) (1/2)( '( )) / ''( )

( )

| 1 ( ) |

1
( )

2 ''( )

1
( )

2 ''( )

n n n n n n n n n n

n
n n n

n n n n n n n

n
n n

n n

n
n n

n s s y n n s s y y n s n s
s

x n x n n n

n s s y n y n s n s
s

x n n n

n s

F x A

e e dV y e e e dy
n s

e e dV y e dy
n s

e e

∞ ∞− ∗ − − −

∞ − ∗ − −

− − =

−

 
 ≤ −
  

=

∫ ∫

∫

ψ ψ ψ ψ

σ σ

ψ ψ ψ

σ

ψ

π ψ

π ψ

'( )
( )

''( )
n

n
n n

n ns y n
s

x n n n

y n s
dV y dy

n s

∞ − ∗   −  −     
∫ σ

ψ
φ

ψ

 

Integrate by parts to find 

 ( )

( )

| 1 ( ) |

'( )
( )

''( )

'( )
( )

''( )

n n n n n

n n n

n
n n

n
n n

n n n nn s s x n n
n n

n n

n nn s s y n
n s

x n n n

F x A

x n n s
e e V x n

n s

y n s
e s e V y dy

n s

− ∗

∞ − ∗

− − ≤

 − Φ −  

 − + −Φ   ∫

ψ σ

ψ

σ

σ ψ
σ

ψ

ψ

ψ

 

Now plug the bound from Step 4. 

 

[ ]

[ ]

[ ]

3( )
3/2

3 ( )
3/2

3 ( ) '( )
3/2

| 1 ( ) |

9

''( )

18

''( )

18

''( )

n n n n n n

n n

n n n n n

n n n n n

n
n n

nn s s x n s y
n

x n
n n

n n s s x n

n n

n n s n s s

n n

F x A

M
e e s e dy

n s

M
e

n s

M
e

n s

∞− −

−

−

− −

 ≤ + 
 

=

=

∫ψ σ

σ

ψ σ

ψ ψ

ψ

ψ

ψ

 (*) 

where the last step follows from '( )n n n nx n n s=σ ψ . Now from Step 2 

 ( )2[ ( ) '( ) (1/2) ''( ) ] 1 ( ''( ))n n n n n n n nn s s s s s
n n n nA e s n sψ ψ ψ ψ− += −Φ . 

By Lemma 3 we may replace the cumulative normal tale with the density and  get the 

inequality 

 
2

2
1
( ''( ))[ ( ) '( ) (1/2) ''( ) ] 1 2( ''( ))

2

n n n
n n n n n n n

s n sn s s s s s
n n n n

K
A e s n s e

ψψ ψ ψ ψ
π

−− + −≥ . 

Hence 

 [ ( ) '( ) ] 2
''( )n n n n nn s s s

n n n ne s n s A
K

ψ ψ π
ψ− ≤  

plug this into (*), and we now have 
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[ ]
3
3/2

| 1 ( ) |

18 2
''( )

''( )

n
n n

n
n n n ns

n n

F x A

M
s n s A

Kn s

π
ψ

ψ

− −

≤
 

or dividing 

 31 ( ) 18 2
| 1 |

''( )

n
n n

n
ns n n

F x M
s

A s K

−
− ≤

π

ψ
. 

By Lemma 1 0ns →  so the RHS goes to zero. Note that for this result we do not need 

1/6 0nn x− → , 1/2 0nn x− →  would be sufficient. 

6.6. Sixth and Final Step 

We must now show 

 
( )2[ ( ) '( ) (1/2) ''( ) ]
1 ( ''( ))

1
1 ( ) 1 ( )

n n n n n n n
n n nn n s s s s s

n n

s n sA
e

x x
ψ ψ ψ

ψ− + −Φ
= →

−Φ −Φ
 

Will do this by showing that both 

 
2[ ( ) '( ) (1/2) ''( ) ] 1n n n n n n n nn s s s s se ψ ψ ψ− + →  

and 

 
( )1 ( ''( ))

1
1 ( )
n n n

n

s n s

x

−Φ
→

−Φ
ψ

. 

6.6.1. Final Step First Half 

 
2[ ( ) '( ) (1/2) ''( ) ] 1n n n n n n n nn s s s s se − + →ψ ψ ψ  

or equivalently that  

 2( ) [ ( ) '( ) (1/2) ''( ) ] 0n n n n n n n n n ng s n s s s s s= − + →ψ ψ ψ . 

Observe that (0) 0, '(0) 0, ''(0) 0n n ng g g= = = . Hence by the mean value theorem  

 3( ) (1/6) '''( )n n ng s g ns= ζ . 

By the uniform boundedness assumptions on the third through fifth derivatives of nψ  

'''( )ng ζ  is uniformly bounded, so by Lemma 1  ( ) 0n ng s →  provided 1/6 0nn x− → . 
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6.6.2. Final Step Last Half 

 
( )1 ( ''( ))

1
1 ( )

n n n

n

s n s

x

ψ−Φ
→

−Φ
 

Use Lemma 2 and , ''( )n n n nx s n s → ∞ψ  to conclude that 

 

( )

( ) ( )

( )

2 2

1

1

(1/2)[ ''( ) ]

(1/

1 ( ''( ))
lim

1 ( )

( ''( )) ( ''( ))
1 ( ''( ))

1 ''( )
lim

( )
1 ( )

1 ( )

( ''( ))
lim

''( ) ( )

''( )
n n n n

n n n
n

n

n n n n n n
n

n n n
n

n n
n

n

n n n n
n

n n n n

ns n s x

n n n

s n s

x

s n s s n s
s n s

s n s

x x
x

x

x s n s

s n s x

x
e

s n s

e

→∞

−

→∞ −

→∞

− −

−

−Φ
−Φ

−Φ
−Φ

=
−Φ

−Φ

=

=

=

ψ

ψ

ψ φ ψ
ψ

ψ

φ

φ ψ

ψ φ

ψ

[ ]22 22)[ ''( ) '( ) / ] '( )

''( )
n n n n n n ns n s n s

n n n n

s

s s

−ψ ψ σ ψ

σ ψ

 

Consider first by Lemma 1 

 
2

2

'( ) ''( ) (0)
1

''( ) ''( ) (0)

n n n n

n n n n n n n

s s

s s s s
= → =

ψ ψ ζ ψ

σ ψ σ ψ σ ψ
 

So we are left with showing 

 [ ]22 2( ) ''( ) '( ) / 0n n n n n n n nh s n s s s = − → ψ ψ σ . 

Here (0) 0, '(0) 0, ''(0) 0n n nh h h= = =  so 

 3( ) (1/6) '''( )n n n nh s h ns= ζ . 

Again by the uniform boundedness assumptions on the third through fifth derivatives of 

nψ , '''( )nh ζ  is uniformly bounded, so by Lemma 1 this is true provided 1/6 0nn x− → . 

� 
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