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Long Run versus Short Run Player

a fixed simultaneous move stage game

Player 1 is long-run with discount factor 


actions 
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Player 2 is short-run with discount factor 0

actions 
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the “short-run” player may be viewed as a kind of “representative” of many “small” long-run players

· the “usual” case in macroeconomic/political economy models

· the “long run” player is the government

· the “short-run” player is a representative individual

Example 1: Peasant-Dictator
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Example 2: Backus-Driffil


Low
High

Low
0,0
-2,-1

High
1,-1
-1,0

Inflation Game: LR=government, SR=consumers

consumer preferences are whether or not they guess right


Low
High

Low
0,0
0,-1

High
-1,-1
-1,0

with a hard-nosed government

Repeated Game

history 
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null history 


behavior strategies 

 

long run player preferences

average discounted utility




note that average present value of 1 unit of utility per period is 1

Equilibrium

Nash equilibrium: usual definition – cannot gain by deviating

Subgame perfect equilibrium: usual definition, Nash after each history

Observation: the repeated static equilibrium of the stage game is a subgame perfect equilibrium of the finitely or infinitely repeated game

· strategies: play the static equilibrium strategy no matter what

“perfect equilibrium with public randomization”

may use a public randomization device at the beginning of each period to pick an equilibrium

key implication: set of equilibrium payoffs is convex
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Example: Peasant-Dictator

normal form: unique Nash equilibrium high, eat

eat
grow

low
0*,1
1,2*

high
0*,1*
3*,0

payoff at static Nash equilibrium to LR player: 0

precommitment or Stackelberg equilibrium

precommit to low get 1

mixed precommitment to 50-50 get 2

minmax payoff to LR player: 0

utility to long-run player
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  mixed precommitment/Stackelberg = 2

  best dynamic equilibrium = ?

  pure precommitment/Stackelberg = 1

  static Nash = 0

  worst dynamic equilibrium = ?

  minmax = 0

Repeated Peasant-Dictator

finitely repeated game

final period: high, eat, so same in every period

Do you believe this??

Infinitely repeated game

begin by low, grow

if low, grow has been played in every previous period then play low, grow

otherwise play high, eat (reversion to static Nash)

claim: this is subgame perfect

clearly a Nash equilibrium following a history with high or eat

SR play is clearly optimal

for LR player

may high and get 


or low and get 1

so condition for subgame perfection
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equilibrium utility for LR


1

0                                                                 


                                    2/3                1

General Deterministic Case (Fudenberg, Kreps and Maskin)

  max 


  mixed precommitment/Stackelberg

  

 best dynamic equilibrium

  pure precommitment/Stackelberg
 

 static Nash

  

 worst dynamic equilibrium

  minmax

  min 


Characterization of Equilibrium Payoff 



 where 

 is a b.r. to 




 represent play in the first period of the equilibrium



 represents the equilibrium payoff beginning in the next period







strategy: impose stronger constraint using 
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 static Nash payoff

for best equilibrium 
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for worst equilibrium 
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avoids problem of best depending on worst

remark: if we have static Nash = minmax then no computation is neede for the worst, and the best calculation is exact.

max problem

fix 

 where 

 is a b.r. to 








how big can 

 be in = case? 

Biggest when 

 is smallest, in which case







conclusion for fixed 





i.e. worst in support




observe:

mixed precommitment

pure precommitment

Peasant-Dictator Example


eat
grow

low
0*,1
1,2*

high
0*,1*
3*,0

p(low)
BR
worst in support

1
grow
1

½<p<1
grow
1

p=1/2 
any mixture
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check: 


as 

 then 


min problem

fix 

 where 

 is a b.r. to 








Biggest 

 must have smallest 





conclusion




or




that is, constrained minmax

Example


L
M
R

U
0,-3
1,2
0,3

D
0,3*
2,2
0,0

static Nash gives 0

minmax gives 0

worst payoff in fact is 0

pure precommitment also 0

mixed precommitment



 is probability of up

to get more than 0 must get SR to play M



 and 


first one




second one




want to play D so take 


get 



utility to long-run player

  max 

=2

  mixed precommitment/Stackelberg=11/16

    

 best dynamic equilibrium=1

   pure precommitment/Stackelberg=0
 

 static Nash=0

  

 worst dynamic equilibrium=0

  minmax=0

  min 

=0

calculation of best dynamic equilibrium payoff



 is probability of up







worst in support

<1/6
L
0

1/6<p<5/6
M
1

p>5/6
R
0

so best dynamic payoff is 1
Set of dynamic equilibria





Set of dynamic equilibria





Set of dynamic equilibria
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