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AN EXPERIMENTAL STUDY OF THE CENTIPEDE GAME 

BY RICHARD D. MCKELVEY AND THOMAS R. PALFREY 1 

We report on an experiment in which individuals play a version of the centipede game. 
In this game, two players alternately get a chance to take the larger portion of a 
continually escalating pile of money. As soon as one person takes, the game ends with 
that player getting the larger portion of the pile, and the other player getting the smaller 
portion. If one views the experiment as a complete information game, all standard game 
theoretic equilibrium concepts predict the first mover should take the large pile on the 
first round. The experimental results show that this does not occur. 

An alternative explanation for the data can be given if we reconsider the game as a 
game of incomplete information in which there is some uncertainty over the payoff 
functions of the players. In particular, if the subjects believe there is some small 
likelihood that the opponent is an altruist, then in the equilibrium of this incomplete 
information game, players adopt mixed strategies in the early rounds of the experiment, 
with the probability of taking increasing as the pile gets larger. We investigate how well a 
version of this model explains the data observed in the centipede experiments. 

KEYWORDS: Game theory, experiments, rationality, altruism. 

1. OVERVIEW OF THE EXPERIMENT AND THE RESULTS 

THIS PAPER REPORTS THE RESULTS of several experimental games for which the 
predictions of Nash equilibrium are widely acknowledged to be intuitively 
unsatisfactory. We explain the deviations from the standard predictions using an 
approach that combines recent developments in game theory with a parametric 
specification of the errors individuals might make. We construct a structural 
econometric model and estimate the extent to which the behavior is explainable 
by game-theoretic considerations. 

In the games we investigate, the use of backward induction and/or the 
elimination of dominated strategies leads to a unique Nash prediction, but there 
are clear benefits to the players if, for some reason, some players fail to behave 
in this fashion. Thus, we have intentionally chosen an environment in which we 
expect Nash equilibrium to perform at its worst. The best known example of a 
game in this class is the finitely repeated prisoners' dilemma. We focus on an 
even simpler and, we believe more compelling, example of such a game, the 
closely related alternating-move game that has come to be known as the 
"centipede game" (see Binmore (1987)). 

The centipede game is a finite move extensive form two person game in which 
each player alternately gets a turn to either terminate the game with a favorable 
payoff to itself, or continue the game, resulting in social gains for the pair. As 

'Support for this research was provided in part by NSF Grants #IST-8513679 and #SES-878650 
to the California Institute of Technology. We thank Mahmoud El-Gamal for valuable discussions 
concerning the econometric estimation, and we thank Richard Boylan, Mark Fey, Arthur Lupia, and 
David Schmidt for able research assistance. We thank the JPL-Caltech joint computing project for 
granting us time on the CRAY X-MP at the Jet Propulsion Laboratory. We also are grateful for 
comments and suggestions from many seminar participants, from an editor, and from two very 
thorough referees. 
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far as we are aware, the centipede game was first introduced by Rosenthal 
(1982), and has subsequently been studied by Binmore (1987), Kreps (1990), and 
Reny (1988). The original versions of the game consisted of a sequence of a 
hundred moves (hence the name "centipede") with linearly increasing payoffs. 
A concise version of the centipede game with exponentially increasing payoffs, 
called the "Share or Quit" game, is studied by Megiddo (1986), and a slightly 
modified version of this game is analyzed by Aumann (1988). It is this exponen- 
tial version that we study here. 

In Aumann's version of the centipede game, two piles of money are on the 
table. One pile is larger than the other. There are two players, each of whom 
alternately gets a turn in which it can choose either to take the larger of the two 
piles of money or to pass. When one player takes, the game ends, with the 
player whose turn it is getting the large pile and the other player getting the 
small pile. On the other hand, whenever a player passes, both piles are 
multiplied by some fixed amount, and the play proceeds to the next player. 
There are a finite number of moves to the game, and the number is known in 
advance to both players. In Aumann's version of the game, the pot starts at 
$10.50, which is divided into a large pile of $10.00 and a small pile of $.50. Each 
time a player passes, both piles are multiplied by 10. The game proceeds a total 
of six moves, i.e., three moves for each player. 

It is easy to show that any Nash equilibrium to the centipede game involves 
the first player taking the large pile on the first move-in spite of the fact that 
in an eight move version of the game, both players could be multi-millionaires if 
they were to pass every round. Since all Nash equilibria make the same outcome 
prediction, clearly any of the usual refinements of Nash equilibrium also make 
the same prediction. We thus have a situation where there is an unambiguous 
prediction made by game theory. 

Despite the unambiguous prediction, game theorists have not seemed too 
comfortable with the above analysis of the game, wondering whether it really 
reflects the way in which anyone would play such a game (Binmore (1987), 
Aumann (1988)). Yet, there has been no previous experimental study of this 
game.2 

In the simple versions of the centipede game we study, the experimental 
outcomes are quite different from the Nash predictions. To give an idea how 
badly the Nash equilibrium (or iterated elimination of dominated strategies) 
predicts outcomes, we find only 37 of 662 games end with the first player taking 
the large pile on the first move, while 23 of the games end with both players 
passing at every move. The rest of the outcomes are scattered in between. 

One class of explanations for how such apparently irrational behavior could 
arise is based on reputation effects and incomplete information.3 This is the 
approach we adopt. The idea is that players believe there is some possibility 

2There is related experimental work on the prisoner's dilemma game by Selten and Stoecker 
(1986) and on an ultimatum bargaining game with an increasing cake by Guth et al. (1991). 

3See Kreps and Wilson (1982a), Kreps et al. (1982), Fudenberg and Maskin (1986), and Kreps 
(1990, pp. 536-543). 
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that their opponent has payoffs different from the ones we tried to induce in the 
laboratory. In our game, if a player places sufficient weight in its utility function 
on the payoff to the opponent, the rational strategy is to always pass. Such a 
player is labeled an altruist.4 If it is believed that there is some likelihood that 
each player may be an altruist, then it can pay a selfish player to try to mimic 
the behavior of an altruist in an attempt to develop a reputation for passing. 
These incentives to mimic are very powerful, in the sense that a very small belief 
that altruists are in the subject pool can generate a lot of mimicking, even with a 
very short horizon. 

The structure of the centipede game we run is sufficiently simple that we can 
solve for the equilibrium of a parameterized version of this reputational model. 
Using standard maximum likelihood techniques we can then fit this model. 
Using this assumption of only a single kind of deviation from the "selfish" 
payoffs normally assumed in induced-value theory5 we are able to fit the data 
well, and obtain an estimate of the proportion of altruistic players on the order 
of 5 percent of the subject pool. In addition to estimating the proportion of 
altruists in the subject pool, we also estimate the beliefs of the players about 
this proportion. We find that subjects' beliefs are, on average, equal to the 
estimated "true" proportion of altruists, thus providing evidence in favor of a 
version of rational expectations. We also estimate a decision error rate to be on 
the order of 5%-10% for inexperienced subjects and roughly two-thirds that for 
experienced subjects, indicating two things: (i) a significant amount of learning 
is taking place, and (ii) even with inexperienced subjects, only a small fraction of 
their behavior is unaccounted for by a simple game-theoretic equilibrium model 
in which beliefs are accurate. 

Our experiment can be compared to that of Camerer and Weigelt (1988) (see 
also Neral and Ochs (1989) and Jung et al. (1989)). In our experiment, we find 
that many features of the data can be explained if we assume that there is a 
belief that a certain percentage of the subjects in the population are altruists. 
This is equivalent to asserting that subjects did not believe that the utility 
functions we attempted to induce are the same as the utility functions that all 
subjects really use for making their decisions. I.e., subjects have their own 
personal beliefs about parameters of the experimental design that are at odds 
with those of the experimental design. This is similar to the point in Camerer 
and Weigelt, that one way to account for some features of behavior in their 
experiments was to introduce "homemade priors"-i.e., beliefs that there were 
more subjects who always act cooperatively (similar to our altruists) than were 
actually induced to be so in their experimental design. (They used a rule-of- 
thumb procedure to obtain a homemade prior point estimate of 17%.) Our 
analysis differs from Camerer and Weigelt partly in that we integrate it into a 
structural econometric model, which we then estimate using classical tech- 

4We called them "irrationals" in an earlier version of the paper. The equilibrium implications of 
this kind of incomplete information and altruism has been explored in a different kind of 
experimental game by Palfrey and Rosenthal (1988). See also Cooper et al. (1990). 

5See Smith (1976). 
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niques. This enables us to estimate the number of subjects that actually behave 
in such a fashion, and to address the question as to whether the beliefs of 
subjects are on average correct. 

Our experiment can also be compared to the literature on repeated prisoner's 
dilemmas. This literature (see e.g., Selten and Stoecker (1986) for a review) 
finds that experienced subjects exhibit a pattern of "tacit cooperation" until 
shortly before the end of the game, when they start to adopt noncooperative 
behavior. Such behavior would be predicted by incomplete information models 
like that of Kreps et al. (1982). However, Selten and Stoecker also find that 
inexperienced subjects do not immediately adopt this pattern of play, but that it 
takes them some time to "learn to cooperate." Selten and Stoecker develop a 
learning theory model that is not based on optimizing behavior to account for 
such a learning phase. One could alternatively develop a model similar to the 
one used here, where in addition to incomplete information about the payoffs of 
others, all subjects have some chance of making errors, which decreases over 
time. If some other subjects might be making errors, then it could be in the 
interest of all subjects to take some time to learn to cooperate, since they can 
masquerade as slow learners. Thus, a natural analog of the model used here 
might offer an alternative explanation for the data in Selten and Stoecker. 

2. EXPERIMENTAL DESIGN 

Our budget is too constrained to use the payoffs proposed by Aumann. So we 
run a rather more modest version of the centipede game. In our laboratory 
games, we start with a total pot of $.50 divided into a large pile of $.40 and a 
small pile of $.10. Each time a player chooses to pass, both piles are multiplied 
by two. We consider both a two round (four move) and a three round (six move) 
version of the game. This leads to the extensive forms illustrated in Figures 1 
and 2. In addition, we consider a version of the four move game in which all 
payoffs are quadrupled. This "high payoff" condition therefore produced a 
payoff structure equivalent to the last four moves of the six move game. 

1 2 1 2 6.40 

fT 1T fT fT P 1.60 

0.40 0.20 1.60 0.80 
0.10 0.80 0.40 3.20 

FIGURE 1.-The four move centipede game. 

I 2 14 2 1 2 25.60 
. P P P0 P P P 6.40 

fT fT fT fT fT fT 26 

0.40 0.20 1.60 0.80 6.40 3.20 
0.10 0.80 0.40 3.20 1.60 I2.80 

FIGURE 2.-The six move centipede game. 
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TABLE I 

EXPERIMENTAL DESIGN 

Session Subject Games/ Total # High 
pool subjects subject games moves Payoffs 

1 PCC 20 10 100 4 No 
2 PCC 18 9 81 4 No 
3 CIT 20 10 100 4 No 
4 CIT 20 10 100 4 Yes 
5 CIT 20 10 100 6 No 
6 PCC 18 9 81 6 No 
7 PCC 20 10 100 6 No 

In each experimental session we used a total of twenty subjects, none of 
whom had previously played a centipede game. The subjects were divided into 
two groups at the beginning of the session, which we called the Red and the 
Blue groups. In each game, the Red player was the first mover, and the Blue 
player was the second mover. Each subject then participated in ten games, one 
with each of the subjects in the other group.6 The sessions were all conducted 
through computer terminals at the Caltech Laboratory for Experimental Eco- 
nomics and Political Science. Subjects did not communicate with other subjects 
except through the strategy choices they made. Before each game, each subject 
was matched with another subject, of the opposite color, with whom they had 
not been previously matched, and then the subjects who were matched with 
each other played the game in either Figure 1 and Figure 2 depending on the 
session. 

All details described above were made common knowledge to the players, at 
least as much as is possible in a laboratory setting. In other words, the 
instructions were read to the subjects with everyone in the same room (see 
Appendix B for the exact instructions read to the subjects). Thus it was common 
knowledge that no subject was ever matched with any other subject more than 
once. In fact we used a rotating matching scheme which insures that no player i 
ever plays against a player who has previously played someone who has played 
someone that i has already played. (Further, for any positive integer n, the 
sentence which replaces the phrase "who has previously played someone who 
has played someone" in the previous sentence with n copies of the same phrase 
is also true.) In principle, this matching scheme should eliminate potential 
supergame or cooperative behavior, yet at the same time allow us to obtain 
multiple observations on each individual's behavior. 

We conducted a total of seven sessions (see Table I). Our subjects were 
students from Pasadena Community College (PCC) and from the California 
Institute of Technology (CIT). No subject was used in more than one session. 
Sessions 1-3 involved the regular four move version of the game, session 4 

6Only one of the three versions of the game was played in a given session. In sessions 2 and 6, not 
all subjects showed up, so there were only 18 subjects, with 9 in each group, and consequently each 
subject played only 9 games. 
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TABLE IIA 

PROPORTION OF OBSERVATIONS AT EACH TERMINAL NODE 

Session N fi f2 f3 f4 f5 f f7 

1 (PCC) 100 .06 .26 .44 .20 .04 
Four 2 (PCC) 81 .10 .38 .40 .11 .01 
Move 3 (CIT) 100 .06 .43 .28 .14 .09 

Total 1-3 281 .071 .356 .370 .153 .049 

High Payoff 4 (High-CIT) 100 .150 .370 .320 .110 .050 

5 (CIT) 100 .02 .09 .39 .28 .20 .01 .01 
Six 6 (PCC) 81 .00 .02 .04 .46 .35 .11 .02 
Move 7 (PCC) 100 .00 .07 .14 .43 .23 .12 .01 

Total 5-7 281 .007 .064 .199 .384 .253 .078 .014 

involved the high payoff four move game, and sessions 5-7 involved the six 
move version of the game. This gives us a total of 58 subjects and 281 plays of 
the four move game, and 58 subjects with 281 plays of the six move game, and 
20 subjects with 100 plays of the high payoff game. Subjects were paid in cash 
the cumulative amount that they earned in the session plus a fixed amount for 
showing up ($3.00 for CIT students and $5.00 for PCC students).7 

3. DESCRIPTIVE SUMMARY OF DATA 

The complete data from the experiment is given in Appendix C. In Table II, 
we present some simple descriptive statistics summarizing the behavior of the 
subjects in our experiment. Table IIA gives the frequencies of each of the 
terminal outcomes. Thus fi is the proportion of games ending at the ith 
terminal node. Table IIB gives the implied probabilities, pi of taking at the ith 
decision node of the game. In other words, pi is the proportion of games among 
those that reached decision node i, in which the subject who moves at node i 
chose TAKE. Thus, in a game with n decision nodes, pi =fi/El Ef1f. 

All standard game theoretic solutions (Nash equilibrium, iterated elimination 
of dominated strategies, maximin, rationalizability, etc.) would predict fi = 1 if 
i = 1, fI = 0 otherwise. The requirement of rationality that subjects not adopt 
dominated strategies would predict that fn + i = 0 and Pn = 1. As is evident from 
Table II, we can reject out of hand either of these hypotheses of rationality. In 
only 7% of the four move games, 1% of the six move games, and 15% of the 
high payoff games does the first mover choose TAKE on the first round. So the 
subjects clearly do not iteratively eliminate dominated strategies. Further, when 
a game reaches the last move, Table IIB shows that the player with the last 
move adopts the dominated strategy of choosing PASS roughly 25% of the time 

7The stakes in these games were large by usual standards. Students earned from a low of $7.00 to 
a high of $75.00, in sessions that averaged less than 1 hour-average earnings were $20.50 ($13.40 in 
the four move, $30.77 in the six move, and $41.50 in the high payoff four move version). 
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TABLE IBa 
IMPLIED TAKE PROBABILITIES FOR THE CENTIPEDE GAME 

Session Pi P2 P3 P4 P5 P6 

1 (PCC) .06 .28 .65 .83 
(100) (94) (68) (24) 

Four 2 (PCC) .10 .42 .76 .90 
Move (81) (73) (42) (10) 

3 (CIT) .06 .46 .55 .61 
(100) (94) (51) (23) 

Total 1-3 .07 .38 .65 .75 
(281) (261) (161) (57) 

High 4 (CIT) .15 .44 .67 .69 
Payoff (100) (85) (48) (16) 

S (CIT) .02 .09 .44 .56 .91 .50 
(100) (98) (89) (50) (22) (2) 

Six 6 (PCC) .00 .02 .04 .49 .72 .82 
Move (81) (81) (79) (76) (39) (11) 

7 (PCC) .00 .07 .15 .54 .64 .92 
(100) (100) (93) (79) (36) (13) 

Total 5-7 .01 .06 .21 .53 .73 .85 
(281) (279) (261) (205) (97) (26) 

aThe number in parentheses is the number of observations in the game at that node. 

in the four move games, 15% in the six move games, and 31% in the high payoff 
games.8 

The most obvious and consistent pattern in the data is that in all of the 
sessions, the probability of TAKE increases as we get closer to the last move 
(see Table IIB). The only exception to this pattern is in session 5 (CIT) in the 
last two moves, where the probabilities drop from .91 to .50. But the figure at 
the last move (.50) is based on only two observations. Thus any model to explain 
the data should capture this basic feature. In addition to this dominant feature, 
there are some less obvious patterns of the data, which we now discuss. 

Table III indicates that there are some differences between the earlier and 
later plays of the game in a given treatment which are supportive of the 
proposition that as subjects gain more experience with the game, their behavior 
appears "more rational." Recall that with the matching scheme we use, there is 
no game-theoretic reason to expect players to play any differently in earlier 
games than in later games. Table IIIA shows the cumulative probabilities, 
Fj = _j=1fi of stopping by the jth node. We see that the cumulative distribution 
in the first five games stochastically dominates the distribution in the last five 
games both in the four and six move experiments. This indicates that the games 
end earlier in later matches. Table IIIB shows that in both the four and six 
move sessions, in later games subjects chose TAKE with higher probability at all 

8For sessions 1-3, 7 of the 14 cases in this category are attributable to 2 of the 29 subjects. In the 
high payoff condition, 4 of the 5 events are attributable to 1 subject. 
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TABLE IIIA 

CUMULATIVE OUTCOME FREQUENCIES 

(Fj= E I fi) 

Treatment Game N F1 F2 F3 F4 F5 F6 F7 

Four 1-5 145 .062 .365 .724 .924 1.00 
Move 6-10 136 .081 .493 .875 .978 1.00 

Six 1-5 145 .000 .055 .227 .558 .889 .979 1.000 
Move 6-10 136 .015 .089 .317 .758 .927 .993 1.000 

TABLE IIIB 

IMPLIED TAKE PROBABILITIES 
COMPARISON OF EARLY VERSUS LATE PLAYS IN THE Low PAYOFF CENTIPEDE GAMES 

Treatment Game Pi P2 P3 P4 P5 P6 

Four 1-5 .06 .32 .57 .75 
Move (145) (136) (92) (40) 

6-10 .08 .49 .75 .82 
(136) (125) (69) (17) 

Four 1-5 .00 .06 .18 .43 .75 .81 
Move (145) (145) (137) (112) (64) (16) 

6-10 .01 .07 .25 .65 .70 .90 
(136) (134) (124) (93) (33) (10) 

stages of the game (with the exception of node 5 of the six move games). 
Further, the number of subjects that adopt the dominated strategy of passing on 
the last move drops from 14 of 56, or 25%, to 4 of 27, or 15%. 

A third pattern emerges in comparing the four move games to the six move 
games (in Table IIB). We see that at every move, there is a higher probability of 
taking in the four move game than in the corresponding move of the six move 
game (.07 vs .01 in the first move; .38 vs .06 in the second move, etc.). The same 
relation holds between the high payoff games and the six move games. However, 
if we compare the four move games to the last four moves of the six move 
games, there is more taking in the six move games (.75 vs .85 in the last move; 
.65 vs .73 in the next to last move, etc.). This same relationship holds between 
the high payoff games and the six move games even though the payoffs in the 
high payoff games are identical to the payoffs in the last four moves of the six 
move games. 

There is at least one other interesting pattern in the data. Specifically, if we 
look at individual level data, there are several subjects who PASS at every 
opportunity they have.9 We call such subjects altruists, because an obvious way 
to rationalize their behavior is to assume that they have a utility function that is 

9Some of these subjects had as many as 24 opportunities to TAKE in the 10 games they played. 
See Appendix C. 
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monotonically increasing in the sum of the red and blue payoffs, rather than a 
selfish utility function that only depends on that players' own payoff. Overall, 
there were a total of 9 players who chose PASS at every opportunity. Roughly 
half (5) of these were red players and half (5) were in four move games. At the 
other extreme (i.e., the Nash equilibrium prediction), only 1 out of all 138 
subjects chose TAKE at every opportunity. This indicates the strong possibility 
that players who will always choose PASS do exist in our subject pool, and also 
suggests that a theory which successfully accounts for the data will almost 
certainly have to admit the existence of at least a small fraction of such subjects. 

Finally, there are interesting non-patterns in the data. Specifically, unlike the 
ten cases cited above, the preponderance of the subject behavior is inconsistent 
with the use of a single pure strategy throughout all games they played. For 
example, subject #8 in session #1 (a red player) chooses TAKE at the first 
chance in the second game it participates in, then PASS at both opportunities in 
the next game, PASS at both opportunities in the fourth game, TAKE at the 
first chance in the fifth game, and PASS at the first chance in the sixth game. 
Fairly common irregularities of this sort, which appear rather haphazard from a 
casual glance, would seem to require some degree of randomness to explain. 
While some of this behavior may indicate evidence of the use of mixed 
strategies, some such behavior is impossible to rationalize, even by resorting to 
the possibility of altruistic individuals or Bayesian updating across games. For 
example, subject #6 in session #1 (a blue player), chooses PASS at the last 
node of the first game, but takes at the first opportunity a few games later. 
Rationalization of this subject's behavior as altruistic in the first game is 
contradicted by the subject's behavior in the later game. Rational play cannot 
account for some sequences of plays we observe in the data, even with a model 
that admits the possibility of altruistic players. 

4. THE MODEL 

In what follows, we construct a structural econometric model based on the 
theory of games of incomplete information that is simultaneously consistent 
with the experimental design and the underlying theory. Standard maximum 
likelihood techniques can then be applied to estimate the underlying structural 
parameters. 

The model we construct consists of an incomplete information game together 
with a specification of two sources of errors-errors in actions and errors in 
beliefs. The model is constructed to account for both the time-series nature of 
our data and for the dependence across observations, features of the data set 
that derive from a design in which every subject plays a sequence of games 
against different opponents. The model is able to account for the broad 
descriptive findings summarized in the previous section. By parameterizing the 
structure of the errors, we can also address issues of whether there is learning 
going on over time, whether there is heterogeneity in beliefs, and whether 
individuals' beliefs are on average correct. 



812 R. D. MCKELVEY AND T. R. PALFREY 

We first describe the basic model, and then describe the two sources of 
errors. 

4.1. The Basic Model 

If, as appears to be the case, there are a substantial number of altruists in our 
subject pool, it seems reasonable to assume that the possible existence of such 
individuals is commonly known by all subjects. Our basic model is thus a game 
of two sided incomplete information where each individual can be one of two 
types (selfish or altruistic), and there is incomplete information about whether 
one's opponent is selfish or altruistic. 

In our model, a selfish individual is defined as an individual who derives 
utility only from its own payoff, and acts to maximize this utility. In analogy to 
our definition of a selfish individual, a natural definition of an altruist would be 
as an individual who derives utility not only from its own payoff, but also from 
the payoff of the other player. For our purposes, to avoid having to make 
parametric assumptions about the form of the utility functions, it is more 
convenient to define an altruist in terms of the strategy choice rather than in 
terms of the utility function. Thus, we define an altruist as an individual who 
always chooses PASS. However, it is important to note that we could obtain an 
equivalent model by making parametric assumptions on the form of the utility 
functions. For example, if we were to assume that the utility to player i is a 
convex combination of its own payoff and that of its opponent, then any 
individual who places a weight of at least 2 on the payoff of the opponent has a 
dominant strategy to choose PASS in every round of the experiment. Thus, 
defining altruists to be individuals who satisfy this condition would lead to 
equivalent behavior for the altruists. 

The extensive form of the basic model for the case when the probability of a 
selfish individual equals q is shown in Figure 8 in Appendix A. Hence, the 
probability of an altruist is 1 - q. This is a standard game of incomplete 
information. There is an initial move by nature in which the types of both 
players are drawn. If a player is altruistic, then the player has a trivial strategy 
choice (namely, it can PASS). If a player is selfish, then it can choose either 
PASS or TAKE. 

4.1.1. Equilibrium of the Basic Model 

The formal analysis of the equilibrium appears in Appendix A, but it is 
instructive to provide a brief overview of the equilibrium strategies, and to 
summarize how equilibrium strategies vary over the family of games indexed by 
q. We analytically derive in Appendix A the solution to the n-move game, for 
arbitrary values of q (the common knowledge belief that a randomly selected 
player is selfish) ranging from 0 to 1. 

For any given q, a strategy for the first player in a six move game is a vector, 
(P1, P3, p5), where pi specifies the probability that Red chooses TAKE on move 
i conditional on Red being a selfish player. Similarly, a strategy for Blue is a 
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vector (P2, P4, P6) giving the probability that Blue chooses TAKE on the 
corresponding move conditional that Blue is selfish. Thus a strategy pair is a 
vector p = (P1, P2, ... , P6), where the odd components are moves by Red and 
the even components are moves by Blue. Similar notation is used for the four 
move game. 

In Appendix A, we prove that for generic q there is a unique sequential 
equilibrium to the game, and we solve for this equilibrium as a function of q. 
Let us write p(q) for the solution as a function of q. It is easy to verify the 
following properties of p(q), which are true in both the four move and six move 
games. 

Property 1: For any q, Blue chooses TAKE with probability 1 on its last 
move. 

Property 2: If 1 - q > 4, both Red and Blue always choose PASS, except on 
the last move, when Blue chooses TAKE. 

Property 3. If 1 - q E (0, 7) the equilibrium involves mixed strategies. 
Property 4: If q = 1, then both Red and Blue always choose TAKE. 
From the solution, we can compute the implied probabilities of choosing 

TAKE at each move, accounting for the altruists as well as the selfish players. 
We can also compute the probability s(q) = (sl(q), .. ., s7(q)) of observing each 
of the possible outcomes, T, PT, PPT, PPPT, PPPPT, PPPPPT, PPPPPP. Thus, 
s1(q) = qpl(q), s2(q) = q2(1 - pj(q))p2(q) + q(l - q)p2(q), etc. Figures 3 and 4 
graph the probabilities of the outcomes as a function of the level of altruism, 
1 -q. 

It is evident from the properties of the solution and from the outcome 
probabilities in Figures 3 and 4 that the equilibrium predictions are extremely 
sensitive to the beliefs that players have about the proportion of altruists in the 
population. The intuition of why this is so is well-summarized in the literature 
on signalling and reputation building (for example, Kreps and Wilson (1982a), 
Kreps et al. (1982)) and is exposited very nicely for a one-sided incomplete 
information version of the centipede game more recently in Kreps (1990). The 
guiding principle is easy to understand, even if one cannot follow the technical 
details of the Appendix. Because of the uncertainty in the game when it is not 
common knowledge that everyone is self-interested, it will generally be worth- 
while for a selfish player to mimic altruistic behavior. This is not very different 
from the fact that in poker it may be a good idea to bluff some of the time in 
order to confuse your opponent about whether or not you have a good hand. In 
our games, for any amount of uncertainty of this sort, equilibrium will involve 
some degree of imitation. The form of the imitation in our setting is obvious: 
selfish players sometimes pass, to mimic an altruist. By imitating an altruist one 
might lure an opponent into passing at the next move, thereby raising one's final 
payoff in the game. The amount of imitation in equilibrium depends directly on 
the beliefs about the likelihood (1 - q) of a randomly selected player being an 
altruist. The more likely players believe there are altruists in the population, the 
more imitation there is. In fact, if these beliefs are sufficiently high (at least 4, in 
our versions of the centipede game), then selfish players will always imitate 
altruists, thereby completely reversing the predictions of game theory when it is 
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FIGURE 4. -Equilibrium outcome probabilities for basic six move game. 

common knowledge that there are no altruists. Between 0 and 7, the theory 
predicts the use of mixed strategies by selfish players. 

4.1.2. Limitations of the Basic Model 

The primary observation to make from the solution to the basic model is that 
this model can account for the main feature of the data noted in the previous 
section-namely that probabilities of taking increase as the game progresses. 
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For any level of altruism above 1/72 in the four move game, and for any value 
above 1/73 in the six move game, the solution satisfies the property that pi >p 
whenever i >j. 

Despite the fact that the basic model accounts for the main pattern in the 
data, it is just as obvious that the basic model cannot account for the remaining 
features of the data. It is apparent from Figures 3 and 4 that for any value of q, 
there is at least one outcome with a 0 or close to 0 probability of occurrence. So 
the model will fit poorly data in which all of the possible outcomes occur. Nor 
can it account for any consistent patterns of learning in the data, for substantial 
variations across individuals, or for some of the irregularities described earlier. 

To account for these features of the data, we introduce two additional 
elements to the model-the possibility of errors in actions, and the possibility of 
errors in beliefs. 

4.2. Errors in Actions -Noisy Play 

One explanation of the apparently bizarre irregularities that we noted in the 
previous section is that players may "experiment" with different strategies in 
order to see what happens. This may reflect the fact that, early on, a subject 
may not have settled down on any particular approach about how to play the 
game. Alternatively, subjects may simply "goof," either by pressing the wrong 
key, or by accidentally confusing which color player they are, or by failing to 
notice that is the last round, or some other random event. Lacking a good 
theory for how and why this experimentation or goofing takes place, a natural 
way to model it is simply as noise. So we refer to it as noisy play. 

We model noisy play in the following way. In game t, at node s, if p* is the 
equilibrium probability of TAKE that the player at that node attempts to 
implement, we assume that the player actually chooses TAKE with probability 
(1 - e,)p*, and makes a random move (i.e. TAKE or PASS with probability .5) 
with probability st. Therefore, we can view st/2 as the probability that a player 
experiments, or, alternatively, goofs in the tth game played. We call St the error 
rate in game t. We assume that both types (selfish and altruistic) of players 
make errors at this rate, independently at all nodes of game t, and that this is 
common knowledge among the players. 

4.2.1. Learning 

If the reasons for noisy play are along the lines just suggested, then it is 
natural to believe that the incidence of such noisy play will decline with 
experience. For one thing, as experience accumulates, the informational value 
of experimenting with alternative strategies declines, as subjects gather informa- 
tion about how other subjects are likely to behave. Perhaps more to the point, 
the informational value will decline over the course of the 10 games a subject 
plays simply because, as the horizon becomes nearer, there are fewer and fewer 
games where the information accumulated by experimentation can be capital- 
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ized on. For different, but perhaps more obvious reasons, the likelihood that a 
subject will goof is likely to decline with experience. Such a decline is indicated 
in a wide range of experimental data in economics and psychology, spanning 
many different kinds of tasks and environments. We call this decline learning. 

We assume a particular parametric form for the error rate as a function of t. 
Specifically, we assume that individuals follow an exponential learning curve. 
The initial error rate is denoted by e and the learning parameter is 8. 
Therefore, 

Notice that, while according to this specification the error rate may be 
different for different t, it is assumed to be the same for all individuals, and the 
same at all nodes of the game. More complicated specifications are possible, 
such as estimating different E's for altruistic and selfish players, but we suspect 
that such parameter proliferation would be unlikely to shed much more light on 
the data. When solving for the equilibrium of the game, we assume that players 
are aware that they make errors and learn, and are aware that other players 
make errors and learn too.'0 Formally, when solving for the Bayesian equilib- 
rium TAKE probabilities, we assume that e and 8 are common knowledge. 

4.2.2. Equilibrium with Errors in Actions 

For e > 0, we do not have an analytical solution for the equilibrium. The 
solutions were numerically calculated using GAMBIT, a computer algorithm for 
calculating equilibrium strategies to incomplete information games, developed 
by McKelvey (1990). For comparison, the equilibrium outcome probabilities as a 
function of q, for , = .2, are illustrated graphically in Figures 5 and 6. 

4.3. Errors in Beliefs-Heterogeneous Beliefs 

In addition to assuming that individuals can make errors in their strategies, 
we also assume that there can be errors in their beliefs. Thus, we assume that 
there is a true probability Q that individuals are selfish (yielding probability 
1 - Q of altruists), but that each individual has a belief, qi, of the likelihood of 
selfish players, which may be different from the true Q." In particular, individu- 
als' beliefs can differ from each other, giving rise to heterogeneous beliefs. 

10An alternative specification would have it common knowledge that subjects believe others make 
errors, but believe they do not commit these "errors" themselves. Such a model is analytically more 
tractable and leads to similar conclusions, but seems less appealing on theoretical grounds. 

1tThis is related to the idea proposed independently by Camerer and Weigelt (1988) and Palfrey 
and Rosenthal (1988), where they posit that subjects' beliefs about the distribution of types may 
differ from the induced-value distribution of types announced in the instructions. 
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FIGURE 6.-Equilibrium outcome probabilities for six move game (Et = .2). 

For individual i, denote by qi the belief individual i holds that a randomly 
selected opponent is selfish. (We assume that each individual maintains its 
belief throughout all 10 games that it plays.) Because this converts the complete 
information centipede game into a Bayesian game, it is necessary to make some 
kind of assumption about the beliefs a player has about its opponent's beliefs, 
etc. etc. If there were no heterogeneity in beliefs, so that qi = q for all i, then 
one possibility is that a player's beliefs are correct-that is, q is common 
knowledge, and q = Q. We call this rational expectations. One can then solve for 
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the Bayesian equilibrium of the game played in a session (which is unique), as a 
function of e, 8, t, and q. An analytical solution is derived in Appendix A for 
the case of e = 0. 

To allow for heterogeneity, we make a parametric assumption that the beliefs 
of the individuals are independently drawn from a Beta distribution with 
parameters (a,/3), where the mean of the distribution, q, is simply equal to 
a/(a + /3). There are several ways to specify higher order beliefs. One possibil- 
ity is to assume it is common knowledge among the players that beliefs are 
independently drawn from a Beta distribution with parameters (a, /) and that 
the pair (a, ,3) is also common knowledge among the players. This version of 
higher order beliefs leads to serious computational problems when numerically 
solving for the equilibrium strategies. Instead, we use a simpler12 version of the 
higher order beliefs, which might be called an egocentric model. Each player 
plays the game as if it were common knowledge that the opponent had the same 
belief. In other words, while we, the econometricians, assume there is hetero- 
geneity in beliefs, we solve the game in which the players do have heteroge- 
neous beliefs, but believe that everyone's beliefs are alike. This enables us to 
use the same basic techniques in solving for the Bayesian equilibrium strategies 
for players with different beliefs as one would use if there were homogeneous 
beliefs. We can then investigate a weaker form of rational expectations: is the 
average belief (a/(a + ,B)) equal to the true proportion (Q) of selfish players? 

Given the assumptions made regarding the form of the heterogeneity in 
beliefs, the introduction of errors in beliefs does not change the computation of 
the equilibrium for a given individual. It only changes the aggregate behavior we 
will expect to see over a group of individuals. For example, at an error rate of 
Et= .2, and parameters a, / for the Beta distribution, we will expect to see 
aggregate behavior in period t of the six move games which is the average of the 
behavior generated by the solutions in Figure 6, when we integrate out q with 
respect to the Beta distribution B(a, f). 

5. MAXIMUM LIKELIHOOD ESTIMATION 

5.1. Derivation of the Likelihood Function 

Consider the version of the game where a player draws belief q. For every t, 
and for every Et, and for each of that player's decision nodes, v, the equilibrium 
solution derived in the previous section yields a probability that the decision at 
that node will be TAKE, conditional on the player at that decision node being 
selfish, and conditional on that player not making an error. Denote that 
probability p(e, q, v). Therefore, the probability that a selfish type of that 
player would TAKE at v is equal to P,(et, q, v) = (st/2) + (10- st)ps(e, q, v), 
and the probability that an altruistic type of this player would take is 
Pa(6tg q, v) = Et/2. For each individual, we observe a collection of decisions that 

12While it is simpler, it is no less arbitrary. It is a version of beliefs that does not assume 
"common priors" (Aumann (1987)), but is consistent with the standard formulation of games of 
incomplete information (Harsanyi (1967-68)). 
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are made at all nodes reached in all games played by that player. Let N,i denote 
the set of decision nodes visited by player i in the tth game played by i, and let 
D,i denote the corresponding set of decisions made by i at each of those nodes. 
Then, for any given (?, 8, q, v) with vE Ni. we can compute Ps(Et, q, v) from 
above, by setting et = e-8(t'). From this we compute irti(D ;e, 8, q), the 
probability that a selfish i would have made decisions Dti in game t, with 
beliefs q, and noise/learning parameters (8, 8), and it equals the product of 
Ps(8, q, v) over all v reached by in game t. Letting Di denote the set of all 
decisions by player i, we define rg(Di; s, 8, q) to be the product of the 
irti(Dti; 8,8, q) taken over all t. One can similarly derive mr(Di;E, 8, q), the 
probability that an altruistic i would have made that same collection of 
decisions. Therefore, if Q is the true population parameter for the fraction of 
selfish players, then the likelihood of observing Di, without conditioning on i's 
type is given by: 

-i(Di; Q, E, 8, q) = Qin!(Di; E, 8, q) + (1- Q)wa(Di; E, 8, q). 

Finally, if q is drawn from the Beta distribution with parameters (a, /3), and 
density B(q; a, /3), then the likelihood of observing Di without conditioning on 
q is given by: 

si(Di; Q, 8,8, a, 13)-= f1(Di; Q, 8,8, q)B(q; a, () dq. 

Therefore, the log of the likelihood function for a sample of observations, 
D = (Dl, .. ., D1), is just 

L(D; Q,e , 8, a,3) = E log [si(Di; Q, E, A, a, )]. 
i=1 

For any sample of observations, D, we then find the set of parameter values 
that maximize L. This was, done by a global grid search using the Cray X-MP at 
the Jet Propulsion Laboratory. 

5.2. Treatments and Hypotheses 

We are interested in testing four hypotheses about the parameters of the 
theoretical model. 

(1) Errors in action: Is 8 significantly different from 0? 
(2) Heterogeneity (errors in beliefs): Is the variance of the estimated distribu- 

tion of priors significantly different from O?13 
(3) Rational Expectations: Is the estimated value of Q equal to the mean of 

the estimated distribution of priors, a/(a +/3)? 
(4) Learning: Is the estimated value of 8 positive and significantly different 

from 0? 

13While homogeneity of beliefs is not strictly nested in the Beta distribution model (since the 
Beta family does not include degenerate distributions), the homogeneous model can be approxi- 
mated by the Beta distribution model by constraining (a + ,) to be greater than or equal to some 
large number. 
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The first two hypotheses address the question of whether the two components 
of error in our model (namely errors in action and errors in belief) are 
significantly different from 0. The second two hypotheses address issues of what 
properties the errors have, if they exist. 

In our experimental design, there were three treatment variables: 
(1) The length of the game (either four move or six move). 
(2) The size of the two piles at the beginning of the game (either high payoff, 

($1.60, $.40), or low payoff, ($.40, $.10)). 
(3) The subject pool (either Caltech undergraduates (CIT) or Pasadena City 

College students (PCC)). 
We also test whether any of these treatment variables were significant. 

5.3. Estimation Results 

Table IV reports the results from the estimations. Before reporting any 
statistical tests, we summarize several key features of the parameter estimates. 

First, the mean of the distribution of beliefs about the proportion of altruists 
in the population in all the estimations was in the neighborhood of 5%. Figure 7 
graphs the density function of the estimated Beta distribution for the pooled 
sample of all experimental treatments for the four and six move experiments, 
respectively. Second, if one looks at the rational expectations estimates (which 
constrain a, = /a + 3) to equal Q), the constrained estimate of the Beta 

TABLE IV 

RESULTS FROM MAXIMUM LIKELIHOOD ESTIMATIONa 

Treatment i3 , Q -InL 

unconstrained 42 2.75 .939 .956 .18 .045 327.35 
Four A = Q 44 2.75 .941 .941 .18 .045 327.41 
Move S=0 68 2.50 .965 .950 .21 .000 345.08 

a=0 .972 .850 .23 .020 371.04 

unconstrained 40 2.00 .952 .904 .06 .030 352.07 
Six A = Q 38 2.00 .950 .950 .06 .030 352.76 
Move S = 0 34 1.75 .951 .908 .05 .000 371.01 

= 0 .976 .850 .22 .030 442.96 

unconstrained 42 2.75 .939 .974 .14 .030 464.14 
PCC =Q 40 2.75 .936 .936 .11 .040 464.57 

a=0 .952 .882 .18 .050 508.60 

unconstrained 42 1.25 .971 .880 .22 .040 340.27 
CIT = Q 28 1.00 .966 .966 .22 .040 342.57 

a=0 .994 .750 .27 .010 424.83 

High Payoff 64 2.25 .966 .900 .22 .050 107.11 
All Four Move 48 2.25 .955 .938 .22 .050 435.73 
All Low 28 1.75 .941 .938 .14 .050 702.80 
All Sessions 40 2.00 .952 .930 .18 .050 813.38 

aRows marked g = Q report parameter estimates under the rational expectations restriction that 6/(6 + ,l) = Q. Rows 
marked 8 = 0 are parameter estimates under the hypothesis of no learning. Rows marked a = 0 are parameter estimates 
under the assumption of no heterogeneity. 
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distribution is nearly identical to the unconstrained estimate of the Beta 
distribution. 

Furthermore, the rational expectations estimates of u are nearly identical 
across all treatments. Therefore, if we are unable to reject rational expectations, 
then it would seem that these beliefs, as well as the true distribution of altruists 
are to a large extent independent of the treatments. The greatest difference 
across the treatments is in the estimates of the amount of noisy play. While the 
estimates of 8 are quite stable across treatments, the estimates of e are not. 
This is most apparent in the comparison of the four move and the six move 
estimates of e. We discuss this below after reporting statistical tests. Finally, 
observe that in the o, = 0 estimates (no heterogeneity of beliefs), the estimate of 
A is consistently much larger than the estimate of Q, and the recovered error 
rates are higher. 

It might seem paradoxical that we estimate a level of altruism on the order of 
5%, while the proportion of subjects who choose pass on the last move is on the 
order of 25% for the four move experiments and 15% for the six move 
experiments. One reason for the low estimate of the level of altruism is that in 
the theoretical model, part of this behavior is attributed to errors in action. But 
less obviously, it should be noted that because our equilibrium is a mixed 
strategy, there is a sample selection bias in the set of subjects who get to the last 
move: altruists are more likely to make it to this stage, since they pass on earlier 
moves whereas selfish subjects mix. Thus, even with no errors, we would expect 
to see a higher proportion of passing on the last move than the proportion of 
altruists in the subject pool. 

5.4. Statistical Tests 

Table V reports likelihood ratio x2 tests for comparisons of the various 
treatments, and for testing the theoretical hypotheses of rational expectations, 
learning, and heterogeneity. 
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TABLE V 
LIKELIHOOD RATIO TESTS 

-2 log likelihood 
Hypothesis Treatment d.f. ratio 

Heterogeneity (a = 0) 4-move 1 87.38* 
6-move 1 181.78* 

Theoretical Rational expectations ( = Q) 4-move 1 .12 
Hypotheses 6-move 1 1.38 

Learning (3 = 0) 4-move 1 35.46* 
6-move 1 37.88* 

4-move vs 6-move 5 51.16* 

Treatment 4-high vs 4-low (Payoff Treatment) 5 2.54 
Effects PCC vs CIT All 5 17.94* 

4-move 5 9.63 
6-move 5 8.42 

*Significant at 1% level. 

Our first hypothesis-that E = 0, can be dispensed with immediately. In both 
the four and six move experiments, setting e = 0 yields a likelihood of zero. So 
this hypothesis can be rejected at any level of significance, and is not included in 
Table V. 

To test for heterogeneity, we estimate a model in which a single belief 
parameter, q, is estimated instead of estimating the two parameter model, a 
and , (see Table IV, rows marked a = 0). As noted earlier, homogeneity is 
approximately nested in our heterogeneity model. Therefore, we treat the 
homogeneous model as if it is nested in the heterogeneous model, and report a 
standard x2 test based on likelihood ratios. All statistical tests were highly 
significant (see Table V). Note that by setting Q and all qi to one, then one 
obtains a pure random model where individuals PASS with probability ?/2. 
Hence for any probability of passing less than or equal to 2, the pure random 
model is a special case of the homogeneous model. Thus the above findings 
mean we also reject the pure random model (e = 1). 

In the test for learning, the null hypothesis that 3 = 0 is clearly rejected for all 
treatments, at essentially any level of significance. We conclude that learning 
effects are clearly identified in the data. Subjects are experimenting less and/or 
making fewer errors as they gain experience. The magnitude of the parameter 
estimates of 3 indicate that subjects make roughly two-thirds as many errors in 
the tenth game, compared to the first game. 

The test for rational expectations is unrejectable in most cases. The one 
exception is for the CIT subject pool, where the difference is significant at the 
5% level, but not the 1% level. 

The payoff level treatment variable is not significant. This is reassuring, as it 
indicates that the results are relatively robust. 

The other treatment effects, CIT/PCC and four move/six move, are both 
significant. One source of the statistical difference between the PCC and CIT 
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TABLE VI 

CIT-PCC 
ESTIMATES, BROKEN DOWN INTO FOUR MOVE AND Six MovE TREATMENTS 

a l3 u Q -InL 

PCC 4 74.0 3.75 .95 .996 .210 .04 216.47 
CIT 4 36.0 1.50 .96 .866 .220 .05 214.35 
PCC 6 40.0 2.50 .94 .906 .060 .04 231.28 
CIT 6 80.0 2.25 .97 .902 .060 .03 116.58 

TABLE VII 

CHI-SQUARED TESTS FOR DIFFERENCES IN E AND a ACROSS TREATMENTS 

(UNDER ASSUMPTION THAT /, = Q) 

Parameter Treatment d.f. -2 log L ratio 

? 4-move vs. 6-move 1 39.28a 
CIT vs. PCC 1 3.90 

a 4-move vs. 6-move 1 5.76 
CIT vs. PCC 1 .02 

aSignificant at p =.01 level. 

estimates apparently derives from the fact that two-thirds of the CIT data were 
for four move games, while only half of the PCC data were for four move 
games. Consequently, we break down the statistical comparison between PCC 
and CIT into the four and six move game treatments (see Table VI). The 
subject pool effect is not significant in the six move treatment and is barely 
significant at the 10% level in the four move treatment (see Table V). 

In order to pin down the source of the treatment effects we performed several 
tests. The first one was to test for differences in learning effects across treat- 
ments. This test is done by simultaneously reestimating the parameters for each 
of the different treatments, subject to the constraint that 8 is the same for each 
treatment, and then conducting a likelihood ratio test. Second, we tested for 
differences in the noise parameter, E. The x2 tests are reported in Table VII. 
The results reflect the estimates in Tables IV and V. The only significant (1% 
level) difference is the estimated initial error rate E in the four move versus six 
move games. The CIT/PCC difference in E is significant at the 5% level, but 
this is due to reasons given in the previous paragraph. The difference between 8 
in the six move game and four move game is significant at the 5% level. 

5.5. Fit 

In order to get a rough measure of how well our model fits the data, we use 
the unconstrained parameter estimates from Table IV to obtain predicted 
aggregate outcomes. Table VIII displays the predicted frequencies of each of 
the five possible outcomes of the four move game, and compares these frequen- 
cies to the observed frequencies. This comparison is done for each of the ten 
periods, t, t = 1,..., 10, and for the time-aggregated data. Table IX displays 
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TABLE VIII 

COMPARISON OF PREDICTED (FIRST) VS. 

ACTUAL (SECOND) FREQUENCIES, FOUR MOVE 

(CELLS 4 AND 5 COMBINED FOR COMPUTATION OF X2) 

Predicted Actual 

Period n e fI f2 f3 f4 f5 fl f2 f3 f4 f5 x 

1 58 .18 .106 .269 .291 .291 .042 .000 .276 .379 .241 .103 7.72 
2 58 .17 .101 .292 .298 .271 .037 .103 .276 .345 .241 .034 .69 
3 58 .16 .097 .314 .316 .241 .032 .034 .310 .379 .172 .103 3.11 
4 58 .16 .096 .314 .316 .241 .032 .103 .276 .379 .172 .069 1.24 
5 58 .15 .100 .329 .320 .223 .028 .069 .379 .310 .172 .069 1.04 
6 58 .14 .095 .349 .335 .197 .024 .103 .310 .414 .172 .000 2.00 
7 58 .14 .095 .349 .335 .197 .024 .069 .414 .448 .069 .000 9.39* 
8 58 .13 .090 .369 .338 .181 .021 .069 .414 .345 .138 .034 .87 
9 58 .13 .090 .369 .338 .182 .021 .103 .483 .310 .069 .034 5.10 

10 40 .12 .095 .380 .348 .159 .017 .050 .450 .400 .050 .050 2.99 

Total 562 - .097 .333 .324 .218 .028 .071 .356 .370 .153 .050 

*Significant at .05 level. 

similar numbers for the six move games. The last column of the table displays a 
x2 for each period, comparing the predicted to the actual values.14 

It is evident from Tables VIII and IX that the fit to the four move games is 
better than that of the six move games. For the four move games, in only one of 
the periods (period 7), are the predicted and actual frequencies significantly 
different at the .05 level. In the six move games, there are six periods in which 
there are differences significant at the .05 level, and four of these differences are 
significant at the .01 level. The predicted frequencies for the four move games 
also pick up reasonably well the trends in the data between periods. Thus f2 
and f3 increase over time, while f4 decreases, all in accordance with the actual 
data. In the six move data, on the other hand, the predicted frequencies show 
very small trends in comparison with those in the actual data. The tables can 
also be used to help identify where the model seems to be doing badly. In the 
four move games, the model overestimates f1 and f4 and underestimates f2 
and f3. In the six move games, the model underestimates f3. 

The differences in fit between the four and six move games can be accounted 
for by the limitations of the model we fit. As noted earlier, the main difference 
between the estimates for the four and six move games is in the estimate of S. 
In the four move games, we find a high value of e = .18, while in the six move 
game we find a lower value of e =.06. The reason for the differences in the 
estimates of e between the four and six move games is fairly clear. In order to 
obtain a high value of the likelihood function in the six move games, the model 
is forced to estimate a low error rate, simply because there are almost no 
observations at the first terminal node.15 

14The x2 statistic is not reported for the time-aggregated data, since the assumption of 
independence is violated. 

15In fact, there were no such observations in the first 9 periods and only 2 in the last period. 
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TABLE 
IX 

COMPARISON 

OF 

PREDICrED 

(FIRST) 

VS. 

ACrUAL 

(SECOND) 

FREQUENCIES, 

SIX 

MOVE 

(CELLS 
1 

AND 
2 

COMBINED 

AND 

CELLS 
6 

AND 
7 

COMBINED 

FOR 

COMPUTATION 

OF 

X2) 

Predicted 

Actual 

Period 

n 

E 

f, 

f2 

f 

14 

5 

f6 

f7 

fi 

f2 

f3 

h4 

fs 

f6 

2 

1 

58 

.06 

.035 

.077 

.096 

.435 

.275 

.072 

.010 

.000 

.103 

.103 

.310 

.345 

.103 

.034 

5.33 

2 

58 

.06 

.035 

.077 

.096 

.435 

.275 

.072 

.010 

.000 

.069 

.172 

.276 

.379 

.103 

.000 

10.41* 

3 

58 

.06 

.035 

.077 

.096 

.435 

.275 

.072 

.010 

.000 

.069 

.103 

.345 

.345 

.069 

.069 

5.32 

4 

58 

.05 

.030 

.076 

.113 

.432 

.273 

.068 

.009 

.000 

.034 

.241 

.414 

.207 

.103 

.000 

12.72* 

5 

58 

.05 

.030 

.076 

.113 

.432 

.273 

.068 

.009 

.000 

.000 

.241 

.310 

.379 

.069 

.000 

18.99** 

6 

58 

.05 

.030 

.076 

.113 

.432 

.273 

.068 

.009 

.000 

.069 

.172 

.552 

.138 

.069 

.000 

8.39 

7 

58 

.05 

.030 

.076 

.113 

.432 

.273 

.068 

.009 

.000 

.069 

.276 

.448 

.172 

.034 

.000 

17.98** 

8 

58 

.05 

.030 

.076 

.113 

.432 

.273 

.068 

.009 

.000 

.069 

.276 

.345 

.241 

.034 

.034 

15.68** 

9 

58 

.05 

.030 

.076 

.113 

.432 

.273 

.068 

.009 

.000 

.069 

.172 

.483 

.207 

.069 

.000 

3.86 

10 

40 

.05 

.030 

.076 

.113 

.432 

.273 

.068 

.009 

.100 

.100 

.250 

.350 

.050 

.150 

.000 

20.66** 

Total 

562 

- 

.031 

.076 

.108 

.433 

.274 

.069 

.009 

.007 

.064 

.199 

.384 

.253 

.078 

.014 

*Significant 
at 

.05 

level. 

**Significant 
at 

.01 

level. 
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The difference in the estimates of e also accounts for the failure of the model 
to explain the trends in the six move data. The way that our model explains time 
trends is through the learning parameter, c, which represents the rate at which 
the error rate, ?, declines over time. As et declines, the model implies that the 
game will end sooner, by predicting more frequent outcomes at the earlier 
terminal nodes. In the four move game, the initial error rate is 8 =.18. With 
this high initial error rate, a decay of 8 = .045 is able to lead to substantial 
changes in predicted behavior. However, in the six move games, we estimate a 
significantly lower e = .06. With this lower initial error rate, a similar rate of 
learning will lead to less dramatic changes in behavior. 

Our model of errors assumes that in any given game, the error rate is a 
constant. In other words the likelihood of making an error is the same at each 
node regardless of whether the equilibrium recommends a pure or mixed 
strategy at that node. It might be reasonable to assume instead that individuals 
make more errors when they are indifferent between altematives (i.e., when the 
equilibrium recommends a mixed strategy) than when they have preferences 
over alternatives (i.e., when the equilibrium recommends a pure strategy). In 
other words, the error rate may be a function of the utility differences between 
the choices. Such a model might be able to explain the behavior of the six move 
games with error rates on the same order of magnitude as those of the four 
move games. This in turn might lead to a better fit, and a better explanation of 
the trends in the six move games. We have not investigated such a model here 
because of computational difficulties. 

One final point regards the comparisons between the take probabilities in the 
four move games and the six move games. As noted in Section 3, the aggregate 
data from the four move games exhibit higher take probabilities than the six 
move games at each of the decision nodes 1, 2, 3, and 4. But in contrast to this, 
when one compares the take probabilities of the last four moves of the six move 
game with the four move game (where the terminal payoffs are exactly compara- 
ble), this relationship is reversed; the six move data exhibit the higher take 
probabilities. Both of these features of the data are picked up in the estimates 
from our model. From Tables VIII and IX, the predicted take probabilities for 
the four move and six move games are p4 = (.097,.368, .568,.886), and P6 = 

(.031,.078,.120,.552,.778,.885), respectively. 

6. CONCLUSIONS 

We conclude that an incomplete information game that assumes the existence 
of a small proportion of altruists in the population can account for many of the 
salient features of our data. We estimate a level of altruism on the order of 5%. 
In the version of the model we estimate, we allow for errors in actions and 
errors in beliefs. Both sources of errors are found to be significant. Regarding 
errors in action, we find that there are significant levels of learning in the data, 
in the sense that subjects learn to make fewer errors over time. Subjects make 
roughly two thirds as many mistakes at the end of a session as they make in 
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early play. Regarding errors in beliefs, we reject homogeneity of beliefs. How- 
ever, we find that rational expectations, or on-average correct beliefs, cannot be 
rejected. 

While we observe some subject pool differences, they are small in magnitude 
and barely significant. The payoff treatment had no significant effect. The only 
significant difference between the parameter estimates of the four and the six 
move games was that the estimated initial error rate was lower in the six move 
game. A model in which the error rate is a function of the expected utility 
difference between the available action choices might well account for the 
observed behavior in both the four and the six move games with similar 
estimates of the error rate. This might be a promising direction for future 
research. 

Division of the Humanities and Social Sciences, California Institute of Technol- 
ogy, Pasadena, CA 91125, U.SA. 

Manuscript received May, 1990; final revision received February, 1992. 

APPENDIX A 

In this appendix, we prove that there is a unique sequential equilibrium to the n move centipede 
game with two sided incomplete information over the level of altruism (see Figure 8). 

There are n nodes, numbered i = 1,2,...,n. Player 1 moves at the odd nodes, and Player 2 
moves at the even nodes. We use the terminology "player i" to refer to the player who moves at 
node i. Let the payoff if player i takes at node i be (ai, bi) where ai is payoff to player i and bi is 

Player Player 
1 2 1 2 I n-2 n-I n 

(l-q) 7 p p oP1 
/ P/ , / / 

b 

I p 
- 

Ip II p 
- 

I 

I i I I I I i I 

1 I I I ! I , IX P b+ 

I I I | I b 1-2 Ib 

q(l-q) p p P p * * * P ol | I Is I I ?S I101, 
I? 02 0, ,.2 b5,b ,- 

q2~ ~~~ p P t .. t pt p_ r po 
b, b2 b/ b4 b- b 

q(I-q) pP \P "P b.+1 

Eri0 1 0T0 0 P0 0 0 20 _ 0, 

b1 bp b3 b4 b9 b--2 b,..1 b, 

FIGURE 8.-Centipede game with incomplete information (dashed lines represent information 
sets and open circles are starting nodes, with probabilities indicated). 
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payoff to player i - 1 (or i + 1). Also, if i = n + 1, then (ai, bi) refers to the payoff if player n passes 
at the last node. Define 

ai -bi+I 
'Iii =- 

Ia.+2 - bi+l 

We assume that ai+2 > ai > bi+, and that i7i is the same for all i. We write 77 = 1i (A similar 
solution can be derived when the 71' are different.) 

Now a strategy for the game can be characterized by a pair of vectors p = (p. pn) and 
r = (r1,..., rn), where for any node i, pi is the probability that a selfish type takes at that node, and 
ri is the conditional probability, as assessed by player i at node i, of the other player being selfish. 
Let q be the initial probability of selfishness. So r1 = q. 

LEMMA 1: If p E R' and r e R' are a sequential equilibrium, then: 
(a) forall i, pi=O =*piO for allj < i; 
(b) Pn = 1. Also, pi = 1 i=n or i =n-1. 

PROOF: (a) Assume pi = 0. Clearly pi-1 = 0, because at node i - 1, the value to player i - 1 of 
passing is at least ai+1, which is by assumption greater than ai-1, the payoff from taking. 

(b) By dominance, pn = 1. Suppose pi = 1 for i < n - 1. Then by Bayes rule ri+ 1 = 0, so Pi+ 1 = 0 
is the best response by player i + 1, since i's type has been revealed. But pi+, = 0 p1 = 0 by part 
(a), which is a contradiction. Q.E.D. 

Define k to be the first node at which 0 <pi, and k to be the first node for which pi = 1. Clearly 
k < k. Then k and k partition the nodes into at most three sets, which we refer to as the passing 
stage (i < k), the mixing stage (k < i < k), and the taking stage (k < i). From Lemma 1 it follows that 
there are no pure strategies in the mixing stage. From Lemma 1(b), it follows that the taking stage is 
at least one and at most two moves. 

LEMMA 2: In any sequential equilibrium (p, r), for 1 < i S n - 1, 
(a) O <Pi < 1 ,ripi+1 = 1 -77; 
(b) riPi+ 1 < 1 -77 ==Pi = ; 
(c) ripi+1 > 1-u =*1=Pi 1. 

PROOF: (a) Assume 0 <Pi < 1. Let vi be the value to player i at node i given equilibrium play 
from node i on. Write vn+1 = an+1. Now if i = n - 1, then vi+2 = vn+1 = an+1 = ai+2- If i <n - 1, 
then by Lemma 1, 0 <Pi ? 0 <Pi+2, which implies Vi+2 = ai+2. Now in both cases 0 <pi implies 
vi = ai = ripi+1bi+1 + (1 - ripi+1)ai+2. Solving for ripi+1, we get 

ai+2 - ai 
riPi+1 = 1 77. 

ai+2 - bi+l 

(b) If rip1+1 < 1 - q, then at node i, v, > ripi+1b,+l + (1 - ripi+i)ai+2 = ai+2 - ripi+,1(ai+2 - 
bi+1)> ai+2 - (ai+2 -ai)= ai. So vi >ai =ip= 0. 

(c) If ripi+ I> 1 - u7, then Pi +1 > 0 =OPi+2> 0 (by Lemma 1). Hence, Vi+2 = ai+2. By similar 
argument to (b), vi < a5 i = 1. Q.E.D. 

LEMMA 3: For generic q, for any sequential equilibrium there are an even number of nodes in the 
mixing stage. I.e., k = k + 2K for some integer 0 < K < n/2. For any k < K, 

(a) rk+2k= 1-(1-q)/nqk; 
(b) rk-12k= 1 k+1 

PROOF: We first show (a) and (b), and then show k = k + 2K. 
(a) For any node i, Bayes rule implies 

() ri+2 = (1 -p,+)ri ri-Pi+ 
(1-pi+ Ori + (1-ri) 1-Pi+lri 
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By assumption r1 = q. And since in the passing stage pi = 0, it follows that rk = q. Now if both i and 
i + 2 are in the mixing stage, it follows from Lemma 1 that i + 1 is also, implying 0 <pi+ < 1. So by 
Lemma 3, ripi+,1 = 1 - q. Hence, (1) becomes 

(2) 
ri -_1 _ __ (l -r r) 

By induction, it follows that as long as k < '(1 - k), then k + 2k < k is in the mixing stage. So 

r- k 1-q 
r k+2k 1 k 1 k 

(b) As above, as long as both i and i - 2 are in the mixing stage, we get 

(1 ri-2) 

Solving for ri-2, we get 

ri-2 = 1 - (l - ri). 

Now from Lemma 2, it follows, since PT, = 1, 

1 - =7 
rl- =-1=-= 1 -,. 

Pi~ 

Hence, by induction, as long as k < 2(k - k), we have 

rk-1-2k = 1-7k(l-r k-1) = 1-nk+l. 

Finally, to show that there are an even number of nodes in the mixing stage, assume, to the 
contrary that there are an odd number. Then we can write k = k + 2k + 1 for some k > 0. Thus 
k = k - 1 - 2k. So by part (b) we have r I = 1 - 7k+ 1. But by (a) we have r k = 1 - (1 - q) = q, 
implying that q = 1 - nk+ 1. For generic q, this is a contradiction, implying that k = k + 2K for 
some K > 0. If k > n/2, then k > k + n > n, which contradicts Lemma l(b). Hence k = k + 2K for 
some 0 6 K < n/2. Q.E.D. 

THEOREM 4: For generic q, there is a unique sequential equilibrium (p, r) which is characterized as 
follows: Let I be the smallest integer greater than or equal to n/2. If 1 - q < ', set K = I - 1, k = 1, 
and k = 2I - 1. If 1 - q > t7, let K be the largest integer with 1 - q <K, k= n, and k =k -2K. 
The solution then satisfies: 

(a) if i<k, then ri+1 = qandpi=0; 
(b) if i>k, then ri+1=O andpi 1=; K 
(c) if k S i < k: (i) if i = k, then ri+ I- 1 _ , and pi = (q + - 1)/qK; (ii) if i = k + 2k, with 

1 S k <K, then rj+j = 1 - 77K-k, and pi = (1 - q)/(1 _ +1 ); (iii) if i= k + 2k + 1, with 0 6 
k < K, then r1+j = 1-(1-q)/rqk +1, and pi = nk(l _ 7)/(nk_(1-q)). 

PROOF: The formulae for ri and pi in parts (a), (b), and (c) follow by application of the previous 
lemmas together with Bayes rule. In particular in (a), pi = 0 follows from the definition of k, and 
ri + 1 = q follows from pi = 0 for i < i together with Bayes rule. In (b), pi = 1 follows from the 
definition of k, and ri1I = 0 then follows by Bayes rule. In (c), all the formulae for ri1 follow from 
Lemma 3. In (c) part (i), we set k = i + 1 in (1) and solve for Pk to get 

rk-1 - rk+1 

rk= -rk-lrk+1 

But rk - 1 = q and rk+1 =1 - K. So 

q -1 + 77 
K 

Pk= K 
q?7 
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In parts (ii) and (iii) of (c), we apply Lemma 2a to get that p = (1 - r)/(ri11). Substituting in for 
the values of ri -I gives the required formulae. 

Thus, it only remains to prove the assertions about k and k. We first prove two preliminary 
inequalities. First, note, k > 1 implies, by Lemma 2, 

Pk-1=0 rk-lPk 1 l-f 

( q+nK i 

=*q + K17 
K K _ 1K+ I 

=> 1 q>fK+l 

Hence, 

(3) 1 - q <q+ I=f k = 1. 

Second, note k = n - 1 implies, by Lemma 2, 

p;= r =*r7kp+I > i-X 

q+nK_ 1 
S 

,1-Xl 

1-q<flK+1 

Hence, 

(4) 1_q > 77K+1 =,k=n. 

Let 
n 

I=[21. 

There are two cases. 
Case I: 1 - q < i7 From Lemma 3, we have 

n n 
K< =K? - -1=oI>K+1. 2 121 

Thus we have 1 - q << I SK+l. But from (3), this implies k = 1. Now since k > n - 1, it follows 
that K = I - 1, and k = k + 2K = 2I - 1. 

Case II: 1-q > 71. Now Pk > O =* (q + qK - 1)/q7K > O 1-q < qK. Suppose 1 - q < qK+ 1. 
Then, from (1), we have k = 1, and by the same argument as Case I, K = I - 1 =>1 q < l K+l1 =7 I, 

a contradiction. Hence we must have 
K+1 < 1-q <yK. 

So K is the largest integer with 1 - q < rK. But now, from (4), it follows that k = n. Q.E.D. 

In the centipede games described in the text, the piles grow at an exponential rate: There are 
real numbers c > d > 1 with ai = cbl and ai+ 1 = dai for all i. So f7 = (c - d)/(cd2 - d). In our 
experiments c = 4, and d = 2, so Y7 = 4. The figures in the text correspond to the solution for the 
two and three round games (n = 4 and n = 6) for these parameters. 

It is interesting to note that since the solution depends only on Y7, the above solution also applies 
if there are linearly increasing payoffs of the form ai + 1 = ai + c, and bi + 1 = bi + c (with c > 0), as 
long as ai > bi+ 1 = bi + c. Hence picking ai, bi, and c so that 

a,-b2 aI-b1-c 1 

a3-b2 ai-bi+c 7 

(e.g., a1 = 60, b1 = 20, c = 30) one can obtain a game with linearly increasing payoffs whose solution 
is exactly the same as the solution of the game with exponentially increasing payoffs treated in this 
paper. 
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APPENDIX B 

Experiment Instructions 

This is an experiment in group decision making, and you will be paid for your participation in 
cash, at the end of the experiment. Different subjects may earn different amounts. What you earn 
depends partly on your decisions, partly on the decisions of others, and partly on chance. 

The entire experiment will take place through computer terminals, and all interaction between 
you will take place through the computers. It is important that you not talk or in any way try to 
communicate with other subjects during the experiments. If you disobey the rules, we will have to 
ask you to leave the experiment. 

We will start with a brief instruction period. During the instruction period, you will be given a 
complete description of the experiment and will be shown how to use the computers. You must take 
a quiz after the instruction period. So it is important that you listen carefully. If you have any 
questions during the instruction period, raise your hand and your question will be answered so 
everyone can hear. If any difficulties arise after the experiment has begun, raise your hand, and an 
experimenter will come and assist you. 

The subjects will be divided into two groups, containing 10 subjects each. The groups will be 
labeled the RED group and the BLUE group. To determine which color you are, will you each 
please select an envelope as the experimenter passes by you. 

[EXPERIMENTER PASS OUT ENVELOPES] 

If you chose BLUE, you will be BLUE for the entire experiment. If you chose RED, you will be 
RED for the entire experiment. Please remember your color, because the instructions are slightly 
different for the BLUE and the RED subjects. 

In this experiment, you will be playing the following game, for real money. 
First, you are matched with an opponent of the opposite color. There are two piles of money: a 

Large Pile and a Small Pile. At the beginning of the game the Large Pile has 40 cents and the Small 
Pile has 10 cents. 

RED has the first move and can either "Pass" or "Take." If RED chooses "Take," RED gets the 
Large Pile of 40 cents, BLUE gets the small pile of 10 cents, and the game is over. If RED chooses 
"Pass," both piles double and it is BLUE's turn. 

The Large Pile now contains 80 cents and the Small Pile 20 cents. BLUE can take or pass. If 
BLUE takes, BLUE ends up with the Large Pile of 80 cents and RED ends up with the Small Pile 
of 20 cents and the game is over. If BLUE passes, both piles double and it is RED's turn again. 

This continues for a total of six turns, or three turns for each player. On each move, if a player 
takes, he or she gets the Large Pile, his or her opponent gets the Small Pile, and the game is over. If 
the player passes, both piles double again and it is the other player's turn. 

The last move of the game is move six, and is BLUE's move (if the game even gets this far). The 
Large Pile now contains $12.80 and the Small Pile contains $3.20. If BLUE takes, BLUE gets the 
Large Pile of $12.80 and RED gets the Small Pile of $3.20. If BLUE passes, then the piles double 
again. RED then gets the Large Pile, containing $25.60, and BLUE gets the Small Pile, containing 
$6.40. This is summarized in the following table. 

PAYOFF CHART FOR DECISION EXPERIMENT 

Move # Large Small RED's BLUE's 
1 2 3 4 5 6 Pile Pile Payoff Payoff 

T .40 .10 .40 .10 
P T .80 .20 .20 .80 
P P T 1.60 .40 1.60 .40 
P P P T 3.20 .80 .80 3.20 
P P P P T 6.40 1.60 6.40 1.60 
P P P P P T 12.80 3.20 3.20 12.80 
P P P P P P 25.60 6.40 25.60 6.40 

[EXPERIMENTER HAND OUT PAYOFF TABLE] 

Go over table to explain what is in each column and row. 
The experiment consists of 10 games. In each game, you are matched with a different player of 

the opposite color from yours. Thus, if you are a BLUE player, in each game, you will be matched 
with a RED player. If you are a RED player, in each game you are matched with a BLUE player. 
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Since there are ten subjects of each color, this means that you will be matched with each of the 
subjects of the other color exactly once. So if your label is RED, you will be matched with each of 
the BLUE subjects exactly once. If you are BLUE, you will be matched with each of the RED 
subjects exactly once. 

We will now begin the computer instruction session. Will all the BLUE subjects please move to 
the terminals on the left side of the room, and all the RED subjects move to the terminals on the 
right side of the room. 

[SUBJECrS MOVE TO CORRECT TERMINALS] 

During the instruction session, we will teach you how to use the computer by going through a few 
practice games. During the instruction session, do not hit any keys until you are told to do so, and 
when you are told to enter information, type exactly what you are told to type. You are not paid for 
these practice games. 

Please turn on your computer now by pushing the button labeled "MASTER" on the right hand 
side of the panel underneath the screen. 

[WAIT FOR SUBJECTS TO TURN ON COMPUTERS] 

When the computer prompts you for your name, type your full name. Then hit the ENTER key. 

[WAIT FOR SUBJECTS TO ENTER NAMES] 

When you are asked to enter your color, type R if your color is RED, and B if your color is 
BLUE. Then hit ENTER. 

[WAIT FOR SUBJECTS TO ENTER COLORS] 

You now see the experiment screen. Throughout the experiment, the bottom of the screen will 
tell you what is currently happening, and the top will tell you the history of what happened in the 
previous games. Since the experiment has not begun yet, the top part of the screen is currently 
empty. The bottom part of the screen tells you your subject number and your color. It also tells you 
the subject number of the player you are matched against in the first game. Is there anyone whose 
color is not correct? 

[WAIT FOR RESPONSE] 

Please record your color and subject number on the top left hand corner of your record sheet. 
Also record the number of the subject you are matched against in the first game. 

Each game is represented by a row in the upper screen, and the player you will be matched with 
in each of the ten games appears in the column labeled "OPP" (which stands for "opponent") on 
the right side of the screen. It is important to note that you will never be paired with the same 
player twice. 

We will now start the first practice game. Remember, do not hit any keys until you are told to 
do so. 

[MASTER HIT KEY TO START FIRST GAME] 

You now see on the bottom part of the screen that the first game has begun, and you are told 
who you are matched against. If you are a RED player, you are told that it is your move, and are 
given a description of the choices available to you. If you are a BLUE player, you are told that it is 
your opponent's move, and are told the choices available to your opponent. 

Will all the RED players now choose PASS by typing in P on your terminals now. 

[WAIT FOR SUBJECTS TO CHOOSE] 

Since RED chose P, this is recorded on the top part of the screen with a P in the first RED 
column, and the cursor has moved on to the second column, which is BLUE, indicating that it is 
BLUE's move. 

On the bottom part of the screen, the BLUE players are now told that it is their turn to choose, 
and are told the choices they can make. The RED players are told that it is their opponent's turn to 
choose, and are told the choices that their opponent can make. Notice, that there is now a Large 
Pile of $.80 and a Small Pile of $.20. 

Will all the BLUE players now please choose TAKE by typing T at your terminal now. 

[WAIT FOR SUBJECTS TO CHOOSE] 
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Since BLUE chose T, the first game has ended. On the bottom part of the screen, you are told 
that the game is over, and that the next game will begin shortly. On the top part of the screen, 
BLUE's move is recorded with a T in the second column. The payoffs from the first game for both 
yourself and your opponent are recorded on the right hand side of the screen in the columns labeled 
"Payoff." Your own payoff is in your color. That of your opponent is in the opponent's color. 

Please record your own payoff on the record sheet that is provided. 

[WAIT FOR SUBJECTS TO RECORD PAYOFFS] 

You are not being paid for the practice session, but if this were the real experiment, then the 
payoff you have recorded would be money you have earned from the first game, and you would be 
paid this amount for that game at the end of the experiment. The total you earn over all ten real 
games is what you will be paid for your participation in the experiment. 

We will now proceed to the second practice game. 

[MASTER HIT KEY TO START SECOND GAME] 

You now see that you have been matched with a new player of the opposite color, and that the 
second game has begun. Does everyone see this? 

[WAIT FOR RESPONSE] 

The rules for the second game are exactly like the first. The RED player gets the first move. 

[DO RED-P, BLUE-P, RED-P] 

Now notice that it is BLUE's move. It is the last move of the game. The Large Pile now contains 
$3.20, and the Small Pile contains $.80. If the BLUE player chooses TAKE, then the game ends. 
The BLUE player receives the Large Pile and the RED player receives the Small Pile. If the BLUE 
player chooses PASS, both piles double, and then the game ends. The RED player receives the 
Large Pile, which now contains $6.40, and the BLUE player receives the Small Pile, containing 
$1.60. 

Will the BLUE player please choose PASS by typing P at your terminal now. 

[WAIT FOR SUBJECTS TO CHOOSE] 

The second practice game is now over. Please record your payoff on the second line of your 
record sheet. 

[WAIT FOR PLAYERS TO RECORD PAYOFFS] 

[MASTER HIT KEY TO START THIRD GAME] 

We now go to the third practice game. Notice again that you have a new opponent. Will all the 
RED players please choose TAKE by typing T at your terminal now. 

[WAIT FOR PLAYERS TO CHOOSE] 

Since the RED player chose TAKE on the first move, the game is over, and we proceed on to the 
next game. Since RED chose TAKE on the first move, BLUE did not get any chance to move. 

Please record your payoff for the third game on the third line of your record sheet. 

[WAIT FOR PLAYERS TO RECORD PAYOFFS] 

This concludes the practice session. In the actual experiment there will be ten games instead of 
three, and, of course, it will be up to you to make your own decisions. At the end of game ten, the 
experiment ends and we will pay each of you privately, in cash, the TOTAL amount you have 
accumulated during all ten games, plus your guaranteed five dollar participation fee. No other 
person will be told how much cash you earned in the experiment. You need not tell any other 
participants how much you earned. 

Are there any questions before we pass out the quiz? 

[EXPERIMENTER TAKE QUESTIONS] 

O.K., then we will now have you take the quiz. 

[PASS OUT QUIZ] 

[COLLECT AND MARK QUIZZES] 

[HAND QUIZZES BACK AND GO THRU CORRECT ANSWERS] 
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We will now begin with the actual experiment. If there are any problems from this point on, raise 
your hand and an experimenter will come and assist you. When the computer asks for your name, 
please start as before by typing in your name. Wait for the computer to ask for your color, then 
respond with the correct color. 

[START EXPERIMENT] 

[CHECK THAT COLORS ARE OK BEFORE BEGINNING EXPERIMENT] 

APPENDIX C 

Experimental Data 

The following tables give the data for our experiment. Each row represents a subject. The 
columns are 

Col 1: Session number 
Col 2: Subject number of Red Player 

Col 2 +j: Outcome of game j. Letting k be the entry in this column, and n be the number of 
moves in the game (n = 4 for Exp. 1-4, n = 6 for Exp. 5-7), then 

k < n -=> game ended with T on move k, 
= n + 1 = game ended with P on move n. 

The matching scheme was: In game j, Red subject i is matched with Blue subject [(i +j - 
1)mod mi], where m is the number of subjects of each color in the session. Thus, with ten subjects of 
each color, in the first game, Red i is matched with Blue i. In the second game, Red i is matched 
with Blue 1 + i, except Red 10, who is matched with Blue 1. 

1 1 3 3 3 3 2 3 2 2 2 3 
1 2 4 2 4 4 4 4 2 4 4 2 
1 3 3 3 2 2 3 3 3 4 3 2 
1 4 4 3 3 4 3 2 3 3 3 2 
1 5 2 1 3 1 3 3 3 3 2 2 
1 6 5 3 4 3 5 4 4 3 3 3 
1 7 4 2 2 3 4 3 2 3 2 3 
1 8 2 1 5 4 1 3 3 4 3 3 
1 9 3 3 4 3 2 2 3 1 3 2 
1 10 4 2 4 2 3 1 3 3 2 5 

SESSION 1 

(Four move, PCC) 

2 1 4 4 3 3 2 4 2 2 2 
2 2 2 1 4 1 3 2 2 2 1 
2 3 3 3 2 2 1 1 1 1 1 
2 4 3 3 3 3 3 2 3 2 3 
2 5 3 4 2 3 2 3 3 2 3 
2 6 3 3 3 2 3 3 2 3 2 
2 7 2 4 3 4 5 2 3 2 2 
2 8 3 2 3 3 2 3 2 3 2 
2 9 2 4 2 3 4 2 3 2 2 

SESSION 2 
(Four move, PCC) 
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3 1 3 4 2 3 2 3 2 2 1 3 
3 2 4 2 2 2 4 2 2 5 4 3 
3 3 2 2 1 1 2 1 1 3 3 2 
3 4 3 2 3 2 2 3 3 3 3 2 
3 5 3 5 2 2 3 4 3 3 2 3 
3 6 5 2 2 5 4 4 4 2 2 2 
3 7 2 3 5 4 2 3 2 2 2 1 
3 8 2 3 3 3 3 2 2 2 5 2 
3 9 5 4 5 5 2 2 2 4 2 4 
3 10 4 4 3 2 2 3 3 2 2 3 

SESSION 3 
(Four move, CIT) 

4 1 2 4 5 4 2 4 4 2 4 4 
4 2 3 3 2 2 2 1 1 1 3 2 
4 3 4 2 3 2 3 2 3 3 2 3 
4 4 2 3 2 3 2 3 3 2 2 2 
4 5 3 3 3 2 5 4 2 2 2 1 
4 6 3 3 2 5 4 2 2 2 2 2 
4 7 3 3 5 4 2 1 3 2 1 1 
4 8 3 5 4 2 3 3 2 2 2 3 
4 9 3 3 3 3 3 2 2 3 3 2 
4 10 3 2 1 1 1 1 1 1 1 1 

SESSION 4 
(Four move, High payoff, CIT) 

5 1 5 5 7 4 4 2 4 2 4 3 
5 2 3 3 3 3 3 4 2 3 2 2 
5 3 5 4 4 3 4 3 3 3 3 5 
5 4 3 3 3 3 3 3 3 3 3 3 
5 5 5 4 4 3 5 4 4 5 5 1 
5 6 4 4 4 3 4 3 3 3 3 3 
5 7 3 3 3 3 3 3 5 4 4 2 
5 8 5 5 4 4 3 3 3 3 2 1 
5 9 5 5 5 5 5 4 4 2 4 4 
5 10 5 4 5 5 4 5 2 4 4 6 

SESSION 5 
(Six move, CIT) 

6 1 5 6 4 5 5 5 6 5 4 
6 2 6 5 7 4 6 4 4 4 4 
6 3 4 5 5 4 5 4 4 4 5 
6 4 5 5 5 4 5 4 4 5 5 
6 5 4 5 6 6 4 4 5 4 5 
6 6 4 2 5 4 4 4 4 7 6 
6 7 4 6 4 4 3 4 3 5 4 
6 8 2 5 4 5 4 5 4 6 5 
6 9 5 4 5 4 5 4 4 3 4 

SESSION 6 
(Six move, PCC) 
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7 1 4 4 4 3 3 4 3 3 3 3 
7 2 2 5 4 2 5 4 3 5 3 4 
7 3 5 3 2 5 5 4 5 5 4 4 
7 4 4 2 5 4 6 6 5 4 4 4 
7 5 2 5 5 4 5 6 4 4 4 4 
7 6 7 6 6 6 5 4 4 4 4 6 
7 7 6 4 4 6 4 4 4 4 6 6 
7 8 4 5 5 4 4 5 5 4 5 4 
7 9 4 3 5 5 5 4 4 5 4 4 
7 10 6 4 2 4 3 2 3 3 4 3 

SESSION 7 
(Six move, PCC) 
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