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1 Introduction

We use data from the US and other advanced economies to show that, at medium-run frequen-
cies, factor shares have a persistent cyclical pattern that displays clear correlations with move-
ments in productivity, employment, output and real wages. Next, we propose an interpretation
of such cycles within the context of a stylized general equilibrium model of endogenous growth.

Apart from the standard features of growth models, our theoretical framework mimics well
the observed relations between factor shares and other macro variables. In our theory, the dy-
namics of income distribution is driven by the interplay between opportunities for technological
change and the income maximization efforts of capital and labor. The interaction between fac-
tor prices and the opportunities for labor-saving innovation causes both persistent growth and
factor shares oscillations. To put it plainly: when economic growth is generated by labor saving
innovations, it brings about oscillations in the factor shares of national income similar to those
observed in the data of advanced economies.

The causal mechanism driving the aggregate distribution of national income between capital
and labor has been an enduring source of controversy among economists, and still is.1 For many
decades - since Nicholas Kaldor convinced the profession that constant factor shares were a
”stylized fact” - macroeconomists have assumed that production functions are Cobb-Douglass,
labor receives about 2/3 of national income and productivity grows forever at a constant rate.
With remarkably few exceptions this state of affairs continued until the work of Piketty and
coauthors (Piketty, 2014; Piketty and Zucman, 2014) broke the spell.2 The ensuing debate has
taken a variety of very interesting turns, and the decreasing trend hypothesis has been widely
questioned.3 Nevertheless, two things are apparent, which are the object of our investigation: (i)
factor shares oscillate quite regularly at medium-run frequencies and, (ii) a good model for such
movements is not yet available.

Our analysis of the data show that such oscillations exhibit the following regularities

• The growth rates of the labor share and of labor productivity are negatively correlated.

• The growth rates of the labor share and of real wages are positively correlated.

1A few relatively recent references include Hicks (1932), Kaldor (1957), Sraffa (1960), NBER (1964), Bronfen-
brenner (1971), Foley and Michl (1999), Hansen and Prescott (2002), Piketty (2014), Sandmo (2015), Acemoglu and
Restrepo (2018), Grossman and Oberfield (2021).

2Solow (1958) is among the earliest to raise a skeptical view on the constancy of factor shares, Boldrin and
Horvath (1995) and Rı́os-Rull and Santaeulalia-LIopis (2010) are among the more recent ones.

3See, e.g., Elsby et al. (2013), Karabarbounis and Neiman (2014), Rognlie (2015), Gutierrez and Piton (2020),
Oberfield and Raval (2021), and Koh et al. (2021) on how measurement issues affect our understanding of such
trends.

1



• The growth rate of the labor share is positively correlated with those of employment and
of hours worked.

• The growth rates of the labor share and value added are weakly negatively correlated.

The stylized growth model we propose display regular medium-run oscillation satisfying all
these regularities. To do this, we show in section 3 that the model with exogenous labor supply
captures the first two facts and then, in section 4, derive the remaining two correlations by intro-
ducing endogenous labor supply.

Building on the notion of competitive innovation (Boldrin and Levine, 2001, 2008), our the-
ory formalizes a mechanism through which the equilibrium dynamics of labor share, wage, and
labor productivity become consistent with the observed patterns. Specifically, we construct a
vintage capital model in which production of the final consumption good requires two com-
plementary inputs, capital and labor. Technical progress, which is labor saving, is embodied in
capital goods: machines of a more recent vintage require less labor to produce one unit of the
final good. Apart from consumption, each vintage of capital can either reproduce itself or create
capital of the next vintage. Innovation is costly, hence profit maximization determines whether
investing should be in old or new machines4.

The model economy admits a unique equilibrium path along which it settles into recurring
cycles, each consisting of an adoption phase and an innovation phase. During the first, machines of
two consecutive vintages are simultaneously employed in producing the final good, and labor is
reallocated from the less to the more advanced vintage. This labor reallocation process increases
both output and average labor productivity. At the same time, the real wage remains stagnant
as the productivity of the marginal labor, which uses machines of the old vintage, is unaltered
until the labor reallocation process is completed. These facts cause the labor share to decline.

At the end of an adoption phase, all labor uses capital of the most recent vintage and the
economy enters an innovation phase, during which capital of the last vintage still accumulates,
its price decreases, the wage rate increases and output of the consumption good stagnates, gen-
erating an increasing labor share. Eventually the changes in relative prices make it profitable to
innovate by turning the extra productive capacity into machines of a new vintage, embodying a
new and better technology. At this point the cycle starts all over again.

4Because each new labor saving technology is embodied in plants/machines of a new vintage, all these words are
used interchangeably across the paper.
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The main contribution of the paper is to provide a dynamic general equilibrium theory of
factor shares oscillations, as driven by endogenous labor saving technological progress, that is
consistent with the main stylized facts of medium-run cycles.

Related Literature Motivated by labor share decline observed in recent decades (Elsby et al.,
2013; Karabarbounis and Neiman, 2014), a few papers investigated issues similar to those we
address. Acemoglu and Restrepo (2018) offers a model of endogenous innovation in which the
labor share is constant at the long run balanced growth path, though it fluctuates during the
transition to it. A shock to the automation technology initially pushes down wages and labor
share, which discourages further automation efforts and creates incentives to create new labor
intensive tasks and stabilize the labor share. Growiec et al. (2018) also contains a model of di-
rected technological change with a similar intuition. Our model shares with these papers the
view that factor shares are endogenously altered by the innovation/investment activity but dif-
fers in that the oscillations are endogenously persistent rather than a temporary response to
exogenous shocks.

In our model, the labor share decreases during an adoption phase as labor reallocates from
firms that use less advanced technology and have a larger labor share to those with more ad-
vanced technology and a smaller labor share. This view echoes the recent empirical literature
on the labor share decline, which emphasizes the role of technology. Some noteworthy papers
are (Autor et al., 2020; Dinlersoz and Wolf, 2018; Hubmer and Restrepo, 2021; Martinez, 2021;
Kehrig and Vincent, 2021; Boldrin and Zhu, 2021).

A number of papers have studied the fluctuations of factor shares at the business cycles
frequency (Boldrin and Horvath, 1995; Gomme and Greenwood, 1995; Young, 2004; Boldrin
and Fernandez-Villaverde, 2006; Rı́os-Rull and Santaeulalia-LIopis, 2010; Choi and Rios-Rull,
2019). Models in this literature typically rely on the combination of exogenous shocks and non-
competitive wage setting to generate a counter-cyclical movement of the labor share. In Leon-
Ledesma and Satchi (2019), upon a negative technology shock, the labor share rises under capital
labor complementarity in the short run, but declines over the medium run as firms overcome the
adjustment cost and switch to more labor saving technologies.

As mentioned, few papers have investigated the medium run behavior of factor shares.
Growiec et al. (2018) decomposes the fluctuation of labor share into short (≤ 8 years), medium
(8− 50 years) and long run (≥ 50 years) frequencies, and find that medium-to-long run fluctu-
ations accounts for about 80% of total labor share fluctuations. Inspired by the European expe-
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rience in the 1970s and 1980s, Blanchard et al. (1997) and Caballero and Hammour (1998) have
explored the factor share dynamics over the medium-run induced by exogenous changes in real
wages. In these papers the variation in real wages and, hence, in labor share is exogenous and
the subsequent response of firms leads back to the initial steady state equilibrium.

Finally, we note the similarities between some points of our model and the literature on di-
rected technological change(Acemoglu, 2002). The main differences are that (i) we claim growth
cycles are ’caused’ by labor-saving technological change, and (ii) we focus on the fundamental
bias (labor vs capital) in a perfectly competitive environment. Finally, this paper is also related
to the vast and relatively forgotten literature on endogenous cycles. Among the many notable
papers that could be quoted the one closer to our intuition, at least in spirit, is Goodwin (1967),
though there is no growth, either exogenous or endogenous, in that model.

The rest of the paper is organized as follows: Section 2 presents the stylized facts. Section 3
outlines the basic model with exogenous labor supply and characterizes the competitive equi-
librium, while section 4 studies the implications of endogenous labor supply and exogenous
population growth. Section 5 provides concluding remarks. Most proofs and calculations are in
the appendices.

2 Stylized Facts

Our crucial finding is that factor shares oscillate regularly at medium-run frequencies and that
they display the following correlations:

• The growth rates of the labor share and of labor productivity are negatively correlated.

• The growth rates of the labor share and of real wages are positively correlated.

• The growth rate of the labor share is positively correlated with those of employment and
of hours worked.

• The growth rates of the labor share and value added are weakly negatively correlated.

2.1 Calculation of the Factor Shares

To calculate the labor income share for the whole economy, we follow the standard approach of
dividing proprietor’s income between labor and capital according to the factor shares observed
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in the rest of economy (Cooley and Prescott, 1995). We define the gross labor share as

LS =
Compensation of Employees

National Income + Depreciation− Proprietors Income− Tax
,

where ”Tax” stands for taxes minus subsidies on production and imports.5 The net labor
share is defined as

LSnet =
Compensation of Employees

National Income− Proprietors Income− Tax
.

2.2 Labor Share

By applying these definitions to the US data we calculate the US quarterly gross and net labor
share series for 1947Q1-2021Q3, which are shown next.

5
9

6
2

6
5

6
8

L
a

b
o

r 
S

h
a

re
, 

%

1947q1 1957q1 1967q1 1977q1 1987q1 1997q1 2007q1 2017q1

LS HP trend

(a) Gross Labor Share

7
2

7
5

7
8

8
1

L
a

b
o

r 
S

h
a

re
, 

%

1947q1 1957q1 1967q1 1977q1 1987q1 1997q1 2007q1 2017q1

Net LS HP trend

(b) Net Labor Share

Figure 2.1: Gross and Net Labor Share, 1947Q1-2021Q3

Note: This figure plots the gross and net labor income share in GDP, at the quarterly frequency, from 1947Q1 to
2021Q3. Also plotted are the HP trend with a smoothing parameter of 1600 and the NBER dating of recessions.

Regular medium-run fluctuations are visible in the behavior of the HP trend. The latter is a
reasonable summary of the 2 to 4 years moving averages which define the medium-run and we
study in detail in the next section. With the expression ”medium run fluctuations”, we refer to
the fairly regular cyclical movements of the labor share visible in the behavior of its HP trend.6

5Data used in calculating the aggregate labor share is taken directly from NIPA, Table 1.7.5 ’Relation of gross
domestic product, gross national product, net national product, national income, and personal income’, and Table
1.12 ’National income by type of income’, covering the period from 1947-q1 to 2021-q3.

6We use the terminology ’medium-run fluctuations’ and ’medium-run cycles/ dynamics’ interchangeably. They
have been often used, in the literature, with somewhat different meanings. In Comin and Gertler (2006), they denote
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Historically, it oscillated within a range of about 6 percentage points of GDP between 1947 and
about 2000, after which a pronounced decline ensued that lasted until 2014. It then displayed a
strong rebound which lasted until the 2020 recession. In the HP trend a full cycle lasts, typically,
about 10-20 years, coincident with some, but longer than, average business cycles.7

Similar patterns hold if we extend the labor share series to the 1929-1946 period, as shown in
Figure A.1. Koh et al. (2021) document that NIPA’s capitalization of intellectual property prod-
ucts (IPP) accounts for most of the observed labor share decline—the labor share under the old
NIPA classification is trend-less. We replicate their exercise in Figure A.2 and confirm that from
1929-2020, though the long run trend is altered, the medium run behavior of the labor share is
not.8

Crucially for our research, note that: (i) the medium-run cycles before WWII are essentially
identical to those after it; (ii) the net labor share exhibits fluctuations around a century-long flat
trend.

2.3 Capital Share

Consider next the complement to the labor share, the capital share. While, in the national income
and product accounts, labor income consists of a single item (compensation of employees), cap-
ital income is the sum of four different components: rental income of persons, corporate profits, net
interest and miscellaneous payments, and consumption of fixed capital. They are plotted in Figure 2.2.

Corporate profits account for most of the cyclical pattern, while net interest is relatively a-
cyclical, as is rental income. Depreciation typically peaks in recessions but this does not alter the
overall cyclical properties of gross factor shares. Given that the short and medium-run dynamics
of the capital share in the US is mainly driven by corporate profits, in the next section, we focus
on data from the Non-Financial Corporate Sector. This is consistent with the theoretical frame-
work proposed later, which has nothing to say about the functional distribution of income in the
Public and in the Financial sectors. The factor share cycles documented for the whole economy

deviations from trend over frequencies longer than business cycles’. Our use is akin to that of Blanchard et al. (1997).
We have tried to follow Comin and Gertler (2006) and extract the medium run cycles using a Baxter-King band pass
filter with a lower and upper limit frequency of 2 and 200 quarters. The obtained medium run cycles coincide well
with the HP trend.

7From Figure 2.1, in US post-WWII period the net labor share contains the following decreasing-then-increasing
cycles: 1947Q1-1958Q3 (11.5 years), 1958Q3-1972Q1 (13.5 years), 1972Q1-1991Q4 (19.75 years), 1991Q4-2001Q3 (9.75
years), 2001Q3-present (20.25 years)

8IPP Data is only available at the annual frequency. We downloaded data from NIPA in March 2022 when IPP
values for 2021 have not yet been released.
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Figure 2.2: Capital Share and Its Components

Note: This figure plots the share of capital income and of its components, at the quarterly frequency. Also plotted
are the HP trends with a smoothing parameter of 1600 and the NBER dating of recessions.

hold even more strongly for the non-farm business sectors and the non-financial corporations
sector, which are closer to the theoretical object analyzed in our model.9 The middle panel of
Figure A.3 in the appendix show that the labor share in the non-farm business sector drives
the dynamics of the one for the whole economy, while the bottom panel confirms that the labor
income share in the non-financial corporate sector, which suffers the least from measurement
issues, displays the same cyclical pattern.

2.4 Medium-Term Correlations

Next we examine the correlation between factor shares and other aggregate variables in the
medium run. To do this we smooth out business cycle fluctuations by using the H-P trend with
a smoothing parameter λ = 1600 as well as calculating moving averages (MA) over 9 quarters

9For the non-farm business sector (NFBS), we calculate the labor share using the same method as for the whole
economy. We obtain ”Tax minus subsidies on production and imports” for NFBS by subtracting the farming portion
from that for the whole economy. As documented in Elsby et al. (2013), the treatment of factor shares for proprietors’
income affects the magnitude of the labor share decline after the 1980s. The medium run fluctuations are, however,
robust to such treatment. For the non-financial corporate sector (NFCS), BLS provides data on labor share, labor
productivity, employment and working hours, which we utilize later in this section. The LS for NFCS, as provided
by BLS, is computed as compensation of employees divided by value added. When this is adjusted for ”Tax minus
subsidies on production and imports” its level increases of about 6 percentage points, but the dynamics is essentially
the same.
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(2-year), 13 quarters (3-year) and 17 quarters (4-year). From now onward these are our labor
(LS) and capital (KS) shares.

The LS co-moves systematically with other aggregate variables. Table 2.1 presents the corre-
lation between the growth rates of the LS, labor productivity (LP), wage rate (WAGE, i.e. real
compensation per hour worked), employment (EMP), and real value added (VADD) at different
frequencies.10 LS is already defined in percentage term, we calculate the difference between t
and t + 1 as its growth rate. For all other labor market variables, the growth rate is defined as
the logarithmic change.

Table 2.1: Sample Correlations

Variable LP WAGE EMP VADD

Quarterly −0.52∗∗∗ 0.41∗∗∗ −0.35∗∗∗ −0.61∗∗∗

9-Quarter MA −0.44∗∗∗ 0.35∗∗∗ 0.22∗∗∗ −0.13∗∗

13-Quarter MA −0.36∗∗∗ 0.40∗∗∗ 0.27∗∗∗ −0.06
17-Quarter MA −0.24∗∗∗ 0.48∗∗∗ 0.32∗∗∗ 0.05

HP trend −0.22∗∗∗ 0.40∗∗ 0.35∗∗∗ 0.08

Note: This table gives the correlation between growth rate in LS
and in other labor market variables at various frequencies. ∗∗∗ : p <
1%; ∗∗ : p < 5%; ∗ : p < 10%. Data is for the Non-Financial Corporate
Sector in the US, from 1947Q1-2021Q3.

At all frequencies, there is a significantly negative correlation between LS and LP, and a sig-
nificantly positive correlation between LS and WAGE. Panel (a) of Figure A.4 plots the growth
rate of the 3-year moving averages of LS and LP while panel (b) plots those for LS and WAGE.

The correlation coefficient between LS and EMP changes sign as we move from business cycle
to lower frequencies. The correlation is significantly negative for quarterly data but it becomes
positive afterwards, which suggests that the medium run dynamics differ qualitatively from
business cycle fluctuations. Panel (a) of Figure A.5 plots the growth rates of the 3-year moving
averages of LS and EMP. The correlation between the LS and working hours is qualitatively and
quantitatively similar to the correlation between LS and EMP at all frequencies, as shown by

10The Bureau of Labor Statistics provides data on LS, value added, labor productivity, employment and hours
worked for the non-financial corporate sector. LS is defined as the share of ”compensation of employees” in ”value
added” for the non-financial corporate sector. The data source for LS is ”U.S. Bureau of Labor Statistics, Non-
financial Corporations Sector: Labor Share for Employees [PRS88003173], retrieved from FRED, Federal Reserve
Bank of St. Louis; https://fred.stlouisfed.org/series/PRS88003173”.
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Table A.1 in the appendix.

The LS and VADD have a significantly negative correlation at the quarterly frequency. It be-
comes less negative for 2-year moving averages and statistically insignificant at lower frequen-
cies. Panel (b) of Figure A.5 plots the growth in the 3-year moving averages of LS and VADD.11

To check that the correlations reported in Table 2.1 are not driven by the long-run trends or by
short-run recessions, we regress the growth rates of the LS (quarterly series, moving averages,
and HP trend) against the growth rate of other labor market variables, controlling for a linear
time trend and a recession dummy. The results are presented in Tables A.2-A.4. The correlation
between the growth rates of the LS and labor productivity, wage, and employment is not af-
fected. The correlation between the growth rates of LS and value added, is significantly negative
for quarterly series, 2- and 3- year moving averages; for 4-year moving averages and the HP
trend, the correlation becomes insignificant, though still negative.12 In Table A.5, we report the
correlation coefficients for the Non-Farm Business Sector of the United States, and find a pattern
that is very similar to the Non-Financial Corporate Sector.

In appendix B, we further confirm that the LS displays similar medium rum fluctuations, and
that the same correlations also hold true for other OECD countries.

To summarize, in the medium run there is a robust negative correlation between changes in
the LS and changes in labor productivity, and a robust positive correlation between changes in
the LS and changes in wages, employment and working hours. In general, changes in the LS
and in value added are negatively correlated but such correlation becomes weaker as the time
frequency gets lower.

In the next two sections we build a model of endogenous growth replicating these four sets
of stylized facts.

11The pattern for the 2- and 4- year moving averages and for the HP trend are similar to the 3-year moving
average.

12In Table A.4 we use data for 1947Q1-2021Q3. The correlation between the LS and the HP trend of real value
added is positive and significant at the 10% level. In an earlier version, using data up to 2020Q3, the same correlation
was negative and insignificant. As this point estimate seems rather unstable, we rely more on estimates obtained
using the moving average terms. Arguably, they impose less assumptions on the raw data, and consistently deliver
a weakly negative correlation between LS and value added.
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3 The Model

Our model rests on two assumptions: (i) capital and labor are complementary inputs;13 (ii) tech-
nical progress is labor saving and embodied in capital goods.14 Everything else is standard:
recursively complete markets over an infinite horizon and a representative agent with perfect
foresight receiving utility from consumption and leisure. We consider first the case of exoge-
nous labor supply.

Preferences The representative household maximizes the following utility over the infinite
horizon,

max
∫ ∞

0
e−ρt log c(t)dt.

where c(t) =
∞
∑

j=0
cj(t), with cj(t) the consumption flow from technology j at instant t. The house-

hold inelastically supplies one unit of labor.

Production Production takes places in three different sectors denoted by s = 1,2,3. Each sec-
tor is composed by a continuum of identical firms endowed with capital of some vintage.15 The
first sector produces the consumption good, the second investment goods and the third a new
vintage of capital embodying a better technology.

Technological Vintages There exists a countably infinite number of potential technologies,
indexed by the subscript j = 0,1, ..... Technologies are embodied in capital goods, hence ks

j(t)
denotes the stock of capital embodying technology j installed in sector s at time t. We say that a
technology j is active in sector s at time t if ks

j(t) > 0.16

Technological Progress A technology with index j is better than a technology with index j′ < j
for two reasons. First, to produce one unit of consumption, a unit of capital j requires less la-
bor than a unit of capital j′, i.e. technological progress is labor saving. Second, technological
progress is incremental insofar as capital j + 1 can be obtained, at a cost, only from capital j and

13That capital and labor are complementary inputs in the aggregate is supported by most empirical estimates.
See e.g. Antras (2004), Klump et al. (2007), Oberfield and Raval (2021).

14Research on biased technological progress dates back to at least Hicks (1932) and Kennedy (1964). Recent contri-
butions include Acemoglu (2002) and Jones (2005), among others. Manuelli and Seshadri (2014) and Acemoglu and
Restrepo (2021) study two different historical examples of labor-saving technological change driven by variations
in the cost of labor.

15Because firms are identical in each sector, we will talk, indifferently, either of a representative firm with a stock
of capital equal to ks(t) or of a continuum of identical firms, each one with ks(t) units of capital.

16Think of them as plants with constant returns to scale.
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not from any other j′ < j.

Consumption Sector The first sector produces consumption, cj(t), using capital k1
j (t) and

labor `(t) according to a fixed coefficient production function,

cj(t) = min{k1
j (t),γ

j`(t)}, γ > 1.

This means that, for every technology j, capital and labor are perfectly complementary inputs.17

The assumption that γ is greater than one captures the fact that technological progress is labor
saving. As a new vintage is adopted, the labor-input requirement to produce 1 unit of consump-
tion decreases by a factor 1/γ.

Investment Sector The second sector produces additional units of capital of type j from cap-
ital of the same vintage, according to

k̇ j(t) = bk2
j (t), b > 0.

The investment sector allows every kind of capital to self-accumulate at the rate b after it has
been introduced.

Innovation Sector The third sector innovates by producing a new vintage of capital, j + 1,
from capital of vintage j

k j+1(t) =
k3

j (t)

a
, a > 1.

Capital stock of type j used in the innovation sector is transformed instantaneously into the new
kind of capital j+ 1. This can be obtained directly only from type j and not from any j′ < j. How-
ever, capital j + 1 can be obtained from capital j′, j′ < j by applying the innovation technology
j− j′ + 1 times. The innovation ratio, in this case, would be equal to aj′−j−1

Because capital j can be employed in any of the three sectors, at any t the following resource
constraint holds

k j(t) = k1
j (t) + k2

j (t) + k3
j (t).

17A Leontief production function is used to obtain analytical solutions. The qualitative results hold for a general
CES production function with gross capital-labor complementarity. Similarly, we use the simple exponential form
to model technological progress only in order to obtain explicit solutions.
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The accumulation equation for capital j, therefore, is

dk j(t) = bk2
j (t)dt− k3

j (t) +
k3

j−1(t)

a
.

This equation says that the stock of capital j changes because of (i) self accumulation (first term),
(ii) full depreciation of the amount used to innovate (second term) and, (iii) innovation from
capital j− 1 (third term). Note that we allow for discrete conversions from any vintage of capital
to the next, as captured by the second and third terms.

This economy is an ordinary diminishing return economy with three sectors: consumption,
investment and innovation. Diminishing returns to capital accumulation derives from the fact
that capital and labor are complementary inputs and available labor is limited. As there is per-
fect competition, the welfare theorems hold and the efficient allocation can be decentralized
as a competitive equilibrium and vice versa.18 Therefore, the competitive equilibrium prices
correspond to the co-state variables of the planner’s problem, a fact we exploit repeatedly in
characterizing the dynamic equilibrium.

Three parametric assumptions are crucial. (1) b > ρ, the rate of capital self-reproduction is
larger than the discount rate, which makes accumulation profitable. (2) a > 1, innovating is
costlier than investing in old capital stock, hence innovation will not take place until the in-
troduction of a new vintage of capital becomes profitable. (3) γ > 1, i.e. machines of a more
advanced vintage require less labor to produce one unit of the consumption good. Below we
prove that, under these assumptions, the competitive equilibrium of the economy settles into a
sequence of growth cycles. Each cycle contains an adoption phase, where capital goods of two
consecutive vintages are simultaneously used to produce consumption and labor is being real-
located from the less to the more advanced vintage, and an innovation phase, where capital is
accumulated till its price decreases enough to make it profitable to use a new vintage to produce
the consumption good.

3.1 Stylized Properties of the Model

In our model, as in the data shown in Figure 2.1, the labor share oscillates regularly and recur-
rently during the growth cycles, as shown in Figure 3.1. In particular, it decreases during an

18The competitive equilibrium of the economy can be described in the usual way by combining utility and profits
maximization.
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adoption phase, and increases during an innovation phase.

0
τ

g
τ

g+τn

Time

L
S

Figure 3.1: LS Dynamics in the Model
Note: This figure illustrates the endogenous and recurrent cycles of LS in the model. τg and τn are the length of

the adoption and innovation phases of a growth cycle.

The model also generates the correlation between labor share and the four macro variables
summarized in the four bullet points at the start of Section 2 and displayed in Table 2.1. The first
two are discussed next.

3.1.1 The growth rates of the labor share and of labor productivity are negatively correlated

The cycles of our model are composed of two phases: adoption and innovation. During the
adoption phase wages are constant but labor productivity increases whereas during the innova-
tion phase the wage increases but labor productivity stagnates. Therein the negative correlation
between LS and labor productivity.

3.1.2 The growth rates of the labor share and of real wages are positively correlated

During the adoption phase wages are constant but productivity and output of the consumption
good increase, hence the labor share of total value added decreases. On the contrary, during
the innovation phase productivity is constant, and so is output of the consumption sector, while
wages increase. This yields the positive correlation between LS and wage.

The correlations summarized in the third and fourth bullet points, and in the last two columns
of Table 2.1 require a variable labor supply and the computation of total output for the three sec-
tors. They are discussed in section 4.
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3.2 Description of the growth cycles

The left panel of Figure 3.2 illustrates the evolution of capital in the consumption sector for two
consecutive cycles.19 Start at time t = 0, when vintage j + 1 is used for the first time to produce
the consumption good that, until then, was entirely produced by capital of vintage j. Consump-
tion increases over time (see the right panel) as plants of vintage j are replaced by those of vintage
j + 1 and labor reallocates from the former to the latter. This phase ends at time t = τg, at which
point capital of vintage j + 1 employs all labor. As shown later, at t = τg capital j + 2 will not be
immediately introduced. It will be ”invented” and accumulated until its price is low enough to
make its adoption profitable. This takes place at t = τg + τn.20 From t = τn to t = τg + τn output
of the consumption sector is constant as labor is already fully employed by capital j + 1. The
recurring growing-then-stagnant evolution of the consumption sector is illustrated in the right
panel of Figure 3.2.
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Figure 3.2: Capital Input and Output in the Consumption Sector

Note: The left panel illustrates the evolution of capital used in the consumption sector; the right panel reports the
output of consumption. γj is the amount of capital j when it employs all labor. τg and τn are the length of an

adoption and innovation phase, respectively.

When, during the adoption phase, vintages j and j + 1 are simultaneously used to produce the
final good, factor income shares change as adoption progresses. When technology j and j + 1

19What is plotted here is an illustration of the general pattern. The actual dynamics of the stock of capital of a
specific vintage is generally nonlinear in time and will be derived later.

20At t = τg + τn, the amount of labor employed by capital j + 1 is 1 and that by capital j + 2 is 0.
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are simultaneously used we have

LSj =
a− 1

a− 1/γ
; LSj+1 =

1
γ

a− 1
a− 1/γ

.

As γ > 1, firms utilizing technology j + 1 admit a smaller LS than firms using j and the
labor reallocation process reduces the aggregate LS. This is because aggregate labor productivity
increases but wages, determined by the marginal worker employed in vintage j, do not. The key
step occurs once the adoption phase ends: all labor is employed with machines of type j + 1 and
productivity growth ceases.

Is there a reason to keep accumulating capital of vintage j + 1? We show in subsection 3.3.
that there is: as its stock accumulates its price drops until it becomes profitable to use the in-
novation sector to turn machines of type j + 1 into machines of type j + 2, thereby introducing
a new technology. This is the innovation phase during which the wage rate and the LS increase
while labor productivity remains constant.

In section 3.3. we also show, formally, that the aggregate LS decreases from a−1
a−1/γ to 1

γ
a−1

a−1/γ

during the adoption phase and increases back to exactly a−1
a−1/γ during the innovation phase. Fig-

ure 3.1 illustrates the recurring LS cycles.

Figure 3.3 depicts the stylized dynamics of the successive vintages of capital stock in the
whole economy. At time t = 0 the transition from vintage j to vintage j + 1 starts, which ends
at τg. At this time all workers are employed with machines of type j + 1, of which there are
γj+1 > γj units. For τn units of time nothing changes in the consumption sector while, in the
investment sector, capital of vintage j + 1 is accumulated further. This ”over-accumulation” of
capital continues until the price of capital reaches a level low enough for the adoption of capital
j + 2 to become profitable.21 The new adoption phase begins at t = τg + τn and the growth cycle
starts again.

3.3 Characterization of the Competitive Equilibrium

We now formally derive the properties of the competitive equilibrium. Use marginal utility as
the numeraire, hence the price of consumption at t is 1/c(t). Denote with qj(t) the price of capital
j at time t. The physical rate of return in the investment sector is b. Zero profit implies that b

21As we show is subsection 3.3, invention of capital j + 2 may occur at any point during the innovation phase.
Paths with different timing of invention are equivalent in that capital j + 2 starts producing consumption always at
the same moment and the same amount of consumption is obtained at any point in time.
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Figure 3.3: Evolution of Total Capital Stock

Note: This figure plots the evolution of aggregate capital stock of different vintages over time in the model.γj is the
amount of capital j when it employs all labor. τg and τn are the length of an adoption and innovation phase,

respectively.

plus capital gains must equal the subjective discount rate

b + q̇j(t)/qj(t) = ρ,

or equivalently,
q̇j(t)/qj(t) = −(b− ρ) < 0.

As it accumulates, the price of capital of type j decreases over time. Its level is characterized
in the following proposition.

Proposition 1: No more than two vintages of capital are simultaneously used to produce consumption,
and these must be consecutive vintages. If j′ is used to produce consumption, the price of capital j, j > j′

satisfies

qj(t) ≥ vj(t) ≡
γj−j′ − 1

γj−j′ − 1/aj−j′
1

bc(t)

with equality if j is also used to produce consumption.

Proof: see Appendix.

The key step in the proof is the computation of the price of capital. Without loss of generality,
assume both capital j′ and j, j > j′, are used to produce the consumption good. Denote with w,
rj and rj′ , respectively, the wage rate, and the return to capital j and to capital j′, all in units of

16



the consumption good.22 The zero profit condition in the consumption sector implies

1− rj −
w
γj = 0, 1− rj′ −

w
γj′ = 0,

and the zero profit condition in the innovation sector leads to23

rj = aj−j′rj′ .

This is a system of three independent equations with three unknowns. It yields

w = γj′ aj−j′ − 1
aj−j′ − 1/γj−j′ ; rj =

γj−j′ − 1
γj−j′ − 1/aj−j′ ,

and rj′ = rj/aj−j′ . The rental rate divided by b, the rate of capital accumulation, gives the value
of the stock of capital, which is

vj(t) =
1

c(t)
rj(t)

b
=

1
bc(t)

γj′−j − 1
γj−j′ − 1/aj−j′ .

The 1/c(t) term converts the price of capital in units of the numeraire, which is marginal utility.

When both capital j and j′, j > j′, are used in production, one extra unit of capital j used in
producing the consumption good demands 1/γj units of labor, which leads to unemployment
of γj′−j units of capital j′ for a given level of labor supply. The value of one extra unit of capital
j should therefore compensate for the units of capital j′ that become obsolete. This is the reason

why the coefficient in the formula of Proposition 1, γj−j′−1
γj−j′−1/aj−j′ , is less than 1. This ”replacement

effect” explains why there are at most two consecutive vintages of capital simultaneously used
in production. When capital j′ is used to produce the consumption good, zero profit in the inno-
vation sector implies that the price of capital goods of type j > j′+ 1 is higher by a factor of aj−j′ .
However, the replacement effect shows that its value in the consumption sector is not as high. It
is therefore not profitable to use any capital j > j′ + 1, to produce consumption.

Proposition 2 characterizes the dynamic behavior of output and factor shares.

22For computational convenience, factor prices are expressed in units of the consumption good. Multiplying
these prices by 1/c(t) gives the price in terms of marginal utility.

23The zero profit condition in the innovation sector is originally written in terms of capital prices. As shown in
the appendix, there is a linear relation between the price and the rental rate of capital.
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Proposition 2: Consumption grows at the rate b− ρ during an adoption phase, which lasts for τg =
logγ
b−ρ units of time. It is followed by an innovation phase, lasting τn =

log a
b−ρ units of time during which

consumption remains constant. The total length of a cycle is

τ∗ =
log a + logγ

b− ρ

The LS declines from a−1
a−1/γ to 1

γ
a−1

a−1/γ in the adoption phase, and increases back to a−1
a−1/γ in the innova-

tion phase.

Proof: see Appendix.

During the adoption phase consumption grows as labor is shifted from the less advanced
capital j to the more advanced j + 1. The labor shares in firms employing capital j and j + 1 are

LSj =
wlj

γjlj
=

a− 1
a− 1/γ

, LSj+1 =
wlj+1

γj+1lj+1
=

1
γ

a− 1
a− 1/γ

which are the formulas we presented earlier. Reallocation of labor from capital j to j + 1, i.e.
from firms with a greater LS to those with a smaller one, decreases the aggregate share of in-
come going to labor. The aggregate LS declines from a−1

a−1/γ to 1
γ

a−1
a−1/γ at the end of the adoption

phase, when all labor works in firms using technology j + 1.

3.4 Levels of capital in the initial phase

We have characterized the stable growth-cycle our model-economy converges to but, in doing
so, we have abstracted from its initial conditions, which we consider next.

Denote with j = 0 the least advanced type of capital and with τj the time at which capital j is
first employed in producing the consumption good, hence with k j(τj) the stock of capital of type
j when it is first used in the production of the consumption good. Without loss of generality,
start with an adoption phase when capital j and j + 1 are simultaneously used. It turns out that
k j+2(τj+2) and k j+1(τj+1) satisfy the following relation,

k j+2(τj+2)

γj+1 = (aγ)
ρ

b−ρ
k j+1(τj+1)

γj − x,
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where x ≡ a
ρ

b−ρ (γ
ρ

b−ρ − 1) (aγ−1)(b−ρ)
ρa(γ−1) > 0.24 Figure 3.4 illustrates the normalized capital stock

kj+2(τj+2)

γj+1 as a function of
kj+1(τj+1)

γj . As (aγ)
ρ

b−ρ > 1, the function is steeper than the 45-degree line.
There exists a unique steady state value for the normalized capital stock. An initial value below
the steady state eventually leads to a negative capital stock and any initial value above it results
in an explosion.25

k*

Normalized capital stock of j+1 at τ
j+1

0

k*

N
o

rm
a

liz
e

d
 c

a
p

it
a

l 
s
to

c
k
 o

f 
j+

2
 a

t 
τ

j+
2

45o line

Figure 3.4: Steady State of Normalized Capital

Note: This figure illustrates the linear relationship between the amount of normalized capital stock k j+1 and k j+2,
evaluated at their first use in production, τj+1 and τj+2 respectively. Also plotted is the 45-degree line.

To investigate the initial capital allocation, we begin with the case 0 < k0(0) < 1, when the
initial stock of capital 0 is not enough to employ all labor at t = 0. The first recurring cycle starts
when machines of type 0 and of type 1 are simultaneously used in producing the final good. We
use τ1 to denote the endogenous starting time of this first cycle. The amount of capital 1 at t = τ1,
k1(τ1), should then equal the steady state value calculated above. During the initial unemploy-
ment phase, capital 1 is too expensive to be introduced immediately: there is excess labor, no
reason to innovate. The competitive equilibrium assigns a certain amount of capital 0 to sector

24See Appendix C.1 for the details of this calculation.
25Both these paths violate the transversality condition. See Appendix C.1 for details.
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1, denoted as k1
0(0), and the rest, k0(0)− k1

0(0), to sector 2. During this initial phase, k1
0(t) and

c(t) grow over time until full employment is reached at time t = τ
g
0 , when consumption equals

1, i.e. c(τg
0 ) = 1.

The first innovation phase starts at this point: capital of type 0 is accumulated further and
consumption remains constant. This phase ends at t = τ1 when the (implicit) price of capital 1
equals its value in production. It should be noted that the value of τ1 is an endogenous variable
as it depends on the initial stock of capital. At t = τ1, the economy enters the recurring cycles
and behaves as described above.

Given k1
0(0), with 0 < k1

0(0) < k0(1), one can calculate τ1 and the value of capital 0 for
0 < t ≤ τ1. As shown in Appendix, the condition that the amount of capital 1 at τ1 equals the
steady state value, i.e. k1(τ1) = k∗, uniquely determines the initial capital allocation.

Recall that k j+1(τj+1) and k j+1(τj+1 + τg) stand for, respectively, the amount of capital j + 1
at the beginning and at the end of the adoption phase in which capital j and j + 1 are simultane-
ously employed. When the initial amount of capital of type 0 is greater than 1, i.e. k0(0) ≥ 1, its
allocation is determined as follows. If k0(0) ∈ [1,k1(τ1) ∗ a + 1), then 1 unit of capital of vintage 0
is used in producing the consumption good and the remaining is used for self-accumulation. If
k0(0)∈ [k j+1(τj+1) ∗ aj+1 +γj ∗ aj,k j+1(τj+1 + τg) ∗ aj+1) for some j≥ 1, then k0(0) is immediately
converted into both capital j and j + 1 and the economy jumps to the corresponding adoption
phase26. Finally, if k0(0) ∈ [k j+1(τj+1 + τg) ∗ aj+1,k j+2(τj+2) ∗ aj+2 + γj+1 ∗ aj+1) for some j, then
a portion of k0(0) is converted into enough capital j+ 1 to produce γj+1 units of the consumption
good while the rest goes to self-accumulation and the economy starts from the corresponding
innovation phase.

Proposition 3 summarizes these results.

Proposition 3: Depending on the quantity of the initial stock of capital, there might be an initial phase
when a single vintage of capital is employed and accumulated. After that initial phase, the economy settles
into a recurring adoption and innovation cycle. The value of capital stock j when it is first introduced at

26Any given amount of the initial type 0 capital maps into a point in some future growth cycle. This correspon-
dence is used to determine how much k0(0) is converted to capital j and how much to j + 1, as well as the initial
allocation of the converted capital among the three sectors.
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t = τj satisfies k j(τj) = γj−1k∗, where k∗ is defined as

k∗ =
x

(aγ)
ρ

b−ρ − 1
,

with x ≡ a
ρ

b−ρ (γ
ρ

b−ρ − 1) (aγ−1)(b−ρ)
ρa(γ−1) .

Proof: see Appendix.

4 Endogenous Labor Supply and Population Growth

We extend the basic model in order to address the correlation between LS, employment and
value added.

4.1 Endogenous labor supply

Relaxing the assumption that labor supply is fixed at one has three consequences:

• (i) during the innovation phase employment grows, hence consumption also grows, though
at a lower rate than during the adoption phase;

• (ii) the relative length of the two phases changes while the total length of a cycle does not;

• (iii) the correlation between the LS and employment becomes positive while that with
value added is weakly negative for some constellations of parameter values.

The representative household’s problem is now

∫ ∞

0
e−ρt[log c(t)− ζ

η − 1
η

`(t)
η

η−1 ]dt,

where ζ > 0 and η > 1.

4.2 Correlation of LS and Hours Worked

To derive the dynamics of employment note that the first order condition w.r.t. working hours
`(t) is

w(t)
c(t)

= ζ ∗ `(t)
1

η−1 .
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During an adoption phase the wage rate, determined by the zero profit conditions in sectors
1 and 2, is constant. As consumption grows at the rate b− ρ, the first order condition for labor
supply implies that employment shrinks at the rate (η − 1)(b− ρ).

In the innovation phase, consumption will not remain constant as a rising wage induces a
higher labor supply, which increases output of the consumption good. Consider the innova-
tion phase when only capital j + 1 is used in consumption. Substitute the production function,
c(t) = γj+1l(t), into the first order condition for working hours to obtain w(t) = ζγj`(t)

η
η−1 .

Hence, during the innovation phase, employment grows at the rate (η − 1)/η times the growth
rate of wages. Because the latter grow during this phase, employment and consumption also
increase. Formally, we have the following proposition27

Proposition 4: The economy with endogenous labor supply settles into a recurring cycle, consisting of
an adoption phase, when consumption grows at the rate b− ρ, and an innovation phase, when consump-

tion grows at the rate
η−1

η logγ

log a+ η−1
η logγ

(b− ρ). The adoption phase lasts for τ̃g =
logγ

η(b−ρ)
, and is followed by

an innovation phase lasting τ̃n =
log a+ η−1

η logγ

b−ρ . The total length of a cycle is

τ̃∗ =
log a + logγ

b− ρ
.

Further, both the LS and the level of employment decline in the adoption phase while they increase during
the innovation phase.

Proof: see Appendix.

This establishes the third in the list of the stylized facts of Section 2.

4.3 Correlation of LS with Output Growth

Until now we have focused on the consumption sector because, in our model, the other two
sectors have a LS equal to 0 by assumption. Total output of the model economy, though, consists
of both consumption and investment, of which there are two kinds.

As we show in Appendix C.4, the growth rate of total output, in both the baseline and ex-
tended models, varies during the two phases of the growth cycle and we cannot prove that it
is always higher in one of them. Depending on parameter values, total output may, therefore,

27We refer to Appendix C.3 for the details of the proof.
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be either positively or negatively correlated with the LS, or not correlated at all. In the data we
have found a negative correlation at the business cycles frequencies, which becomes weaker but
remains negative as the time frequency decreases. These estimates are similar to the findings of
Leon-Ledesma and Satchi (2019) and we find them in general agreement with the predictions of
our model.28 In the appendix, we derive parameter restrictions under which total output growth
is negatively correlated with variations in the LS.29

This establishes the fourth and last stylized facts: LS and output growth are weakly nega-
tively correlated at medium run frequencies.

4.4 Quantitative Performance

In both the baseline and extended models, consumption in the adoption phase grows at the rate
b − ρ; The length of the cycles is determined by a,γ and b − ρ. The value of γ and a further
determines the magnitude of the LS decline in an adoption phase and of LS increase in an inno-
vation phase. Both values are independent of the capital vintage j by assumption in our model.
Allowing these values to vary with j, the model generates cycles of different magnitudes and
lengths, as well as non-symmetric cycles, e.g. a prolonged and pronounced LS decline followed
by a short and small recovery.

We take the consumption growth rate, b − ρ, at 2% per year, recover the value of γj from
the observed decline in LS, and set a to target a peak LS level of two thirds over a full cycle.
Under this parameterization, a decline of the LS by 2-3 percentage points implies a length of
5-7 years for the whole cycle. A more pronounced LS decline, of about 5 percentage points like
during 2000-2014, leads to a cycle of more than 10 years. These numbers align quite well with
the data.30

28In our exercise, we report a negative (and insignificant at lower frequency) correlation between the medium
run labor share and the medium run value added, which differs from Growiec et al. (2018) who finds that the
medium run component of labor share, extracted from frequency domain analysis, varies positively with output
(not medium run output). Another reason that might cause the difference is that we study the non-financial cor-
porate sector, while Growiec et al. (2018) focuses on the aggregate economy. When we use data for the aggregate
economy, we also find a positive correlation between the medium run labor share and the medium run GDP.

29The baseline model also predicts a counterfactual negative correlation between consumption and investment
because during the innovation phase the latter grows while the former does not. In Appendix C.4 we show that
this is not the case in the model with endogenous labor supply.

30We use a logarithmic utility function in the baseline model. With a general CRRA utility function, u(c) =
c1−θ

1−θ , the price of consumption in terms of marginal utility is c−θ . One can calculate that the length of a cycle is

equal to logγ+1/θ∗log a
(b−ρ)/θ

. Given a fixed consumption growth rate, (b− ρ)/θ, the length of a cycle increases with the
intertemporal elasticity of substitution, 1/θ.
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4.5 Population growth

Population growth can also be incorporated into the model without loss of tractability. Assume
the size of the representative household grows at an exogenous rate of n, with n < ρ. The house-
hold’s effective discount rate becomes ρ− n. During an adoption phase, aggregate consumption
grows at the rate b− (ρ− n), while consumption per-capita still grows at the rate b− ρ. There-
fore the length of the growth phase remains unchanged. During the innovation phase, aggregate
consumption grows at the rate n, and the price of capital, in units of current marginal utility, de-
creases at the rate b − (ρ − n). Therefore, the length of the innovation phase also remains the
same. In an economy with population growth the per-capita variables behave exactly the same
as in the baseline economy. The aggregate variables, though, align better with the four stylized
facts considered above.

5 Conclusions

Since the end of WWII the factor shares of US national income, and of other advanced market
economies, have displayed repeated and relatively regular cycles. While such oscillations have
been of differing amplitude they are persistent over time and characterized by a few, robust,
properties: the LS decreases when labor productivity increases faster than on average while,
during the same periods, wage and employment grow less than on average. The opposite is
true when the LS increases. Furthermore, factor shares display clear and stable correlations with
employment and output. We have presented a theoretical model generating exactly such cycles
in an endogenously growing economy.

At the core of our theory is the idea that technical progress is labor-saving and responds
to relative factor prices. Technologies are embodied in capital goods, which can be accumulated
over time, while the other production input (labor) cannot be augmented at a comparable speed.
Accumulation of capital embodying a given technology increases wages, which provides incen-
tives for creating a new, labor-saving, technology embodied in new machines. This interaction
between factor prices and labor-saving technical progress generates perpetual medium run cy-
cles along the equilibrium growth path.

To simplify an already cumbersome algebra, we have assumed in the model that labor is
used only in the consumption sector. On the one hand, we doubt that the type of labor used
to innovate or for creating new equipment is a particularly good substitute for the labor used
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in producing consumption goods, so we do not view the alternative assumption as especially
realistic either. On the other hand, what happens if we require some sort of labor in the capital
accumulation or innovation processes? The lengths of the two cyclical phases will be altered
as the endogenous wage now becomes a factor in determining the cost of investing and/or in-
novating. However, this should not qualitatively affect the endogenous fluctuations in factor
income shares around recurring growth cycles. During the growth phase factor prices are still
determined by zero profit conditions, and the labor share decreases in the reallocation process
from older to more advanced vintages of capitals. In the innovation phase, the accumulation of
new capital would increase the wage rate and the share of labor in total income, as in the base-
line model. Another simplification we have made in order to obtain analytical results is to adopt
a Leontief production function, though a gross complementarity between capital and labor is
sufficient for the mechanism in the model to work.

Our model focuses on medium run dynamics abstracting from shocks and propagation mech-
anisms that are relevant at the business cycle frequencies. The business cycle implications of our
theory, in the presence of some kind of random disturbances occurring at a quarterly frequency,
are left for future research. We also assume a single sector for the production of the final con-
sumption good. Technology is expected to progress at different rates across industries in the real
economy. Since at least Solow (1958), we are aware that, at the sector level, factor shares are not
as stable as in the aggregate. Recent literature (Boldrin and Zhu, 2021; Hubmer and Restrepo,
2021) documents that there is substantial heterogeneity in labor share trends across industries.
These considerations are also left for future research.
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Appendix A Tables and Figures

Table A.1: Correlation between Growth Rate in LS and in Working Hours

Frequency Quarterly 9-Quarter MA 13-Quarter MA 17-Quarter MA HP trend

Coefficient −0.39∗∗∗ 0.12∗∗ 0.16∗∗∗ 0.23∗∗∗ 0.31∗∗∗

Note: This table gives the correlation between growth rate in LS and in total working hours at various
frequencies. ∗∗∗ : p < 1%; ∗∗ : p < 5%; ∗ : p < 10%. Data is for the Non-financial corporate sector in the
US, from 1947Q1-2021Q3.

Table A.2: Regression coefficients, US time series

Dep. var.: ∆LS, quarterly
(1) (2) (3) (4)

∆LP −0.54∗∗∗

(0.05)
∆Wage 0.49∗∗∗

(0.06)
∆Emp −0.33∗∗∗

(0.05)
∆Vadd −0.44∗∗∗

(0.03)

Recession FE Y Y Y Y
Linear time trend Y Y Y Y

R2 0.28 0.20 0.13 0.43
Obs. 298

Note: Non-Financial Corporate Sector, 1947Q1-2021Q3. ∗∗∗ :
p < 1%. The numbers in the brackets are the standard errors.
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Table A.3: Regression coefficients, US time series

Dep. Var.: ∆LS, 2-Year MA Dep. Var.: ∆LS, 3-Year MA
(1) (2) (3) (4) (5) (6) (7) (8)

∆LP −0.50∗∗∗ −0.45∗∗∗

(0.05) (0.06)
∆Wage 0.39∗∗∗ 0.42∗∗∗

(0.06) (0.06)
∆Emp 0.14∗∗∗ 0.15∗∗∗

(0.04) (0.04)
∆Vadd −0.17∗∗∗ −0.12∗∗∗

(0.04) (0.04)

Recession FE Y Y Y Y Y Y Y Y
Linear time trend Y Y Y Y Y Y Y Y

R2 0.25 0.16 0.05 0.08 0.22 0.21 0.08 0.07
Obs. 290 286

Note: Non-Financial Corporate Sector, 1947Q1-2021Q3. In the left (right) panel, we first calculate a
2-year (3-year) moving average for each variable from the original quarterly series, and then calculate
the quarter-to-quarter growth rate of these moving average terms. ∗∗∗ : p < 1%. The numbers in the
brackets are the standard errors.

Table A.4: Regression coefficients, US time series

Dep. Var.: ∆LS, 4-Year MA Dep. Var.: ∆LS, HP trend
(1) (2) (3) (4) (5) (6) (7) (8)

∆LP −0.38∗∗∗ −0.25∗∗∗

(0.06) (0.05)
∆Wage 0.46∗∗∗ 0.37∗∗∗

(0.05) (0.04)
∆Emp 0.18∗∗∗ 0.25∗∗∗

(0.04) (0.03)
∆Vadd −0.03 0.07∗

(0.04) (0.04)

Recession FE Y Y Y Y Y Y Y Y
Linear time trend Y Y Y Y Y Y Y Y

R2 0.15 0.27 0.11 0.03 0.09 0.24 0.16 0.02
Obs. 282 298

Note: Non-Financial Corporate Sector, 1947Q1-2021Q3. In the left (right) panel, we first calculate
a 4-year moving average (HP trend with a smoothing parameter 1600) for each variable from the
original quarterly series, and then calculate the quarter-to-quarter growth rate of these moving
average (HP trend) terms. ∗∗∗ : p < 1%. The numbers in the brackets are the standard errors.

30



Table A.5: Sample Correlation, Non-farm Business sector

Variable LP WAGE EMP VADD

Quarterly −0.63∗∗∗ 0.48∗∗∗ −0.18∗∗∗ −0.54∗∗∗

9-quarter MA −0.44∗∗∗ 0.33∗∗∗ 0.21∗∗∗ −0.13∗∗∗

13-quarter MA −0.39∗∗∗ 0.36∗∗∗ 0.22∗∗∗ −0.12∗∗

17-quarter MA −0.31∗∗∗ 0.40∗∗∗ 0.29∗∗∗ −0.02
HP trend −0.30∗∗∗ 0.36∗∗∗ 0.21∗∗∗ −0.07

Note: This table gives the correlation between growth rate in LS and
in other labor market variables at various frequencies. ∗∗∗ : p <
1%; ∗∗ : p < 5%; ∗ : p < 10%. Data is for the non-farm business
sector in the US, from 1947Q1-2021Q4. Data source for LS is U.S.
Bureau of Labor Statistics (BLS), Non-farm Business Sector: Labor
Share [PRS85006173], retrieved from FRED, Federal Reserve Bank
of St. Louis; The BLS LS assumes wage for proprietors is the same
as the rest of economy. The results are qualitatively the same if we
calculate LS using the definition in the main text.
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Figure A.1: Gross and Net Labor Share, 1929-2020

Note: This figure plots the gross and net labor income share in GDP, at the annual frequency, from 1929 to 2020. Also

plotted are the HP trend with a smoothing parameter of 6.25 and the NBER dating of recessions. A year is labeled

recession if at least two quarters of that year are in recession according to NBER recession dating.
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Figure A.2: LS w/ and w/o IPP adjustment, 1929-2020

Note: The gross labor share (LS) is calculated based on the formula provided in Section 2. IPP stands for

intellectual property products. ”LS, adjusted for IPP” is calculated following Koh et al. (2021). In particular, we use

GDP minus the value of IPP investment in each year as the denominator in calculating the adjusted labor share. A

year is labeled recession if at least two quarters of that year are in recession according to NBER recession dating.
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Figure A.3: LS in the Whole Economy, in the Non-Farm Business Sector, and in the Non-Financial
Corporate Sector

Note: The smoothing parameter in HP filter is 1600. The method to calculate the LS in the whole economy and in

the Nonfarm Business sector is detailed in Section 2. Data source for LS in the Non-Financial Corporate sector,

which does not involve the issue of self employment, is U.S. Bureau of Labor Statistics, Non-financial Corporations

Sector: Labor Share [PRS88003173], retrieved from FRED, Federal Reserve Bank of St. Louis;
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Figure A.4: Growth Rate in LS and Labor Productivity & Wage, 3-Year Moving Average

Note: To produce this figure we first calculate the 3-year moving average of LS, labor productivity and wage for the

non-financial corporate sector, based on the original quarterly series. We then calculate, at each quarter, the growth

rate from the previous quarter for the moving average terms.
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Figure A.5: Growth Rate in LS and Employment & Real Value Added, 3-Year Moving Average

Note: See Figure A.4.
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Figure A.6: Capital Share and Its Components

Note: This figure plots the share of capital income and of its components, at the quarterly frequency. Also plotted

are the HP trends with a smoothing parameter of 1600 and the NBER dating of recessions.
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Figure A.7: Capital Share and Its Components

Note: This figure plots the share of capital income and of its components, at the quarterly frequency. Also plotted

are the HP trends with a smoothing parameter of 1600 and the NBER dating of recessions.
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Appendix B International Evidence

For countries outside of the United States, we use the STructural ANalysis (STAN) database
for Australia, Canada, Denmark, Finland, France, Italy, Japan, Norway, Spain, Sweden and UK
during the period 1970-2018.31 We use the Business sector aggregates, excluding Households,
Nonprofit Institutions, and the General Government. LS is defined as the ratio of Compensation
of Employees to Value added.32 Figure B.1 presents LS in the 11 selected OECD countries.
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Figure B.1: LS in the Business Sector (%, in black) and the HP trend (in blue) in Selected OECD
Countries

Note: The smoothing parameter used in obtaining the HP trend of the annual LS series is 6.25. Data Source: The

STructural ANalysis (STAN) Database from OECD.Stat.

311970 is the starting year for 9 out of 11 countries; for Australia and Spain it is 1974 and 1980, respectively. We
do not include Germany, because the unification makes its data available only since 1991.

32For Canada, Italy, Spain, and Sweden, data on ’Tax less subsides on production’ for the business sector is
only available after 1995 or later. The STAN database does not contain proprietor’s income and the series for self
employment are available only after 1995, hence no adjustment is made.
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We treat the data in the same way as for the US.33 The left panel of Table B.2 reports the re-
gression result for 3-Year moving averages. The correlation is similar to the one we estimated
with the US data. In particular, there is a negative correlation between the growth rate of the LS
and those of labor productivity and value added, and there is a positive correlation between the
growth rate of the LS and those of wages and employment.34 In Table B.1 and the right panel of
Table B.2, we show the results for the original annual time series data and the HP trend. At the
annual frequency, the correlation between change in LS and in employment is positive. For the
HP trend, while correlations for all other variables are the same as 3-year moving averages, the
correlation between change in LS and in value added becomes insignificant.

Table B.1: Regression Coefficients, OECD panel data

Dep. var.: ∆LS, annual
(1) (2) (3) (4)

∆LP −0.37∗∗∗

(0.03)
∆Wage 0.43∗∗∗

(0.02)
∆Emp 0.07∗

(0.04)
∆Vadd −0.18∗∗∗

(0.07)

Country FE Y Y Y Y
Year Y Y Y Y
R2 0.23 0.55 0.01 0.10

Obs. 516 516 529 516

Note: Data is for the Business sector for 11 OECD countries
from 1970-2018.

33In STAN, hours data is only available since 1995 or later for most countries. We define labor productivity as real
value added divided by employment and deflate nominal compensation by the value added deflator, the real wage
rate is real total compensation divided by employment.

34The results for 2- and 4-year moving averages are similar, both in sign and significance, to Table B.2. The only
difference is that the coefficient for value added, at the 4-year moving average, is negative but insignificant.
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Table B.2: Regression Coefficients, 3-Year Moving Average

Dep. var.: ∆LS, 3-year MA Dep. var.: ∆LS, HP trend
(1) (2) (3) (4) (1) (2) (3) (4)

∆LP −0.30∗∗∗ −0.13∗∗∗

(0.03) (0.03)
∆Wage 0.40∗∗∗ 0.33∗∗∗

(0.02) (0.01)
∆Emp 0.11∗∗∗ 0.11∗∗∗

(0.03) (0.02)
∆Vadd −0.06∗∗∗ 0.035

(0.02) (0.021)

Country FE Y Y Y Y Y Y Y Y
Year Y Y Y Y Y Y Y Y
R2 0.18 0.53 0.05 0.04 0.08 0.54 0.08 0.05

Obs. 494 494 507 494 516 516 529 516

Note: Data is for the Business sector for 11 OECD countries from 1970-2018. We first calculate the 3-year
moving average and the HP trend (with a smoothing parameter of 6.25) for each variable from the original
annual series, and then calculate the year-to-year growth rate of these moving average and HP trend terms.

Appendix C Derivations and Proofs - For Online Publication

C.1 Proofs of Propositions in the Baseline Model

Proof of proposition 1 We show how to derive the price formula for the wage and interest
rates and prove why there are at most two consecutive qualities of capital employed in produc-
ing the consumption good. Recall that qj(t) is the price of capital j in units of time-t marginal
utility, hence pj(t) = qj(t)c(t), is the same price in units of time-t consumption and e−ρ(s−t) c(t)

c(s)
is the relative price of time-s consumption to time-t consumption. The following non-arbitrage
condition holds,

pj(t) = qj(t)c(t) = rj(t)∆ + e−ρ∆ c(t)
c(t + ∆)

∗ qj(t + ∆)c(t + ∆), as ∆→ 0
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It follows that
rj(t) = −

1
∆

{
e−ρ∆[qj(t) + q̇j(t)∆]c(t)− qj(t)c(t)

}
= −q̇j(t)c(t) + ρqj(t)c(t), as ∆→ 0

= qj(t)c(t)[−
q̇j(t)
qj(t)

+ ρ]

= qj(t)c(t)b

The last equality follows as we know that the price of capital, in units of time-t marginal
utility, decreases at the rate of b− ρ. Therefore

qj(t) =
1

bc(t)
rj(t) =

1
bc(t)

γj′−j − 1
γj−j′ − 1/aj−j′ .

To see why there are at most two vintages of capital simultaneously used in production and
they must be of adjacent vintages, consider the case where capital j′ is used. The price of capital
j′ + 1 is qj′+1(t) =

γ−1
γ−1/a

1
bc(t) . Zero profit in the innovation sector implies that for any capital

j > j′+ 1, its price equals aj−j′−1qj′+1(t) = aj−j′−1 γ−1
γ−1/a

1
bc(t) , which is strictly larger than the value

it would obtain in the production of consumption, γj−j′−1
γj−j′−1/aj−j′

1
bc(t) . Therefore, any capital of

vintage larger than j′ + 1 will not be employed in production of consumption.

Proof of proposition 2 Consider an adoption phase when capital j and j + 1 are both used
to produce consumption. Capital j + 1 self accumulates during this phase and its price qj+1(t)
decreases at the rate b− ρ, which implies that consumption grows at the rate of b− ρ. Labor is
fully employed by capital j at the beginning of the adoption phase, and by capital j + 1 at the
end of it. Output therefore increases from γj at the beginning to γj+1 at the end. As the rate of
increase in consumption is b− ρ, the length of the growth phase is logγ

b−ρ .

At the end of the adoption phase, capital j + 1 employs all the labor force and, according to
Proposition 1, the price of capital j + 1 is, qj+1(t) =

γ−1
γ/a

1
bc(t) . Zero profits in the innovation sector

imply that the price of capital j + 2 satisfies qj+2(t) = aqj+1(t) = a γ−1
γ−1/a

1
bc(t) . However, the value

of employing capital j + 2 in producing consumption, in this moment, is vj+2(t) =
γ−1

γ−1/a
1

bc(t) . As

qj+2(t) = a
γ− 1

γ− 1/a
1

bc(t)
> vj+2(t) =

γ− 1
γ− 1/a

1
bc(t)

,

using capital j+ 2 to produce additional consumption at the end of the adoption phase for capital
j + 1 would yield negative profits. Hence capital j + 1 will accumulate further, which decreases

39



the prices of both vintages, j + 1 and j + 2. The left hand side (LHS) of the last inequality de-
creases at the rate of b− ρ while its right hand side (RHS) remains constant. Capital j + 2 will be
used to produce consumption when the LHS equals RHS.35 As the price of capital decreases at
the rate of b− ρ, the innovation phase lasts for log a

b−ρ units of time. Note that consumption remains
stagnant during the innovation phase, as all labor is already employed by capital j + 1.

Proof of Proposition 3 We first investigate the evolution of the stock of capital. Start by cal-
culating how much capital is transformed into that of a more advanced vintage, at the beginning
of an adoption phase, once the economy enters the recurring cycles. Consider an adoption phase
when capital j and j+ 1 are simultaneously employed in production. In the main text, we denote
with τj+1 the beginning of such a phase. Here for simplicity we normalize τj+1 to 0. At time 0,
a ∗ k3

j (0) units of capital j are converted into k j+1(0) units of capital j + 1 by using the innovation
technology. The remaining stock, k1

j (0) = γj is used to produce consumption c(0) = γj.

Denote with σj(t) the fraction of labor employed by capital j during an adoption phase. Total
output of the consumption good can then be written as

γjσj(t) + γj+1(1− σj(t)) = c(t)

It follows that σj(t) =
γj+1−c(t)
γj+1−γj = γj+1−γje(b−ρ)t

γj+1−γj = γ−e(b−ρ)t

γ−1 , where the second equality holds be-

cause, in the adoption phase, consumption increases at the rate of b− ρ. Note that when t = logγ
b−ρ ,

σj(t) = 0. Thus, at the end of the adoption phase, all labor is employed by capital j + 1.

Assume that capital j is converted into capital j+ 1 as soon as it is freed from use in producing
the consumption good during the adoption phase.36 That is,

k3
j (t) = −dk j(t) = −γj ∗ dσj(t)

= γj b− ρ

γ− 1
e(b−ρ)t ∗ dt

35A different, more technical, interpretation of this (in-)equality is the following. The overall optimal control
problem can be divided into a series of sub-problems, each dealing with the period of time during which two con-
secutive capital goods are used. Denote λj(J) and λj+1(J) the co-state variables for capital j and j + 1, respectively,
in the sub-problem J. A necessary condition for equivalence of the original problem and the series of sub-problems
is that λend

j+1(J) = λ0
j+1(J + 1). That is, the multiplier for capital j + 1 at the end of sub-problem J should equal that

at the beginning of sub-problem J + 1. This is the price condition reported here.
36Alternatively, we can assume that capital j released from production is first self-accumulated from time t for

a period of positive length ∆t, and converted to capital j + 1 altogether at t + ∆t. These two assumptions are
equivalent in the sense that they deliver exactly the same amount of capital j + 1 at time t + ∆t.
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Therefore, during the adoption phase, the law of motion for capital j + 1 is37

dk j+1(t) = bk2
j+1(t)dt− k3

j+1(t) +
k3

j (t)

a

= b[k j+1(t)− γj+1(1− σj(t))]dt− 0 +
1
a
∗ γj b− ρ

γ− 1
e(b−ρ)tdt

Equivalently,

k̇ j+1(t) = b[k j+1(t)− γj+1(1− σj(t))] + γj b− ρ

a(γ− 1)
e(b−ρ)t

= b[k j+1(t) +
γj+1

γ− 1
] + γj b(1− aγ)− ρ

a(γ− 1)
e(b−ρ)t

until t = τg ≡ logγ
b−ρ when the adoption phase ends. The solution to this ordinary differential

equation has the following form: k j+1(t) = θ0 + θ1ebt + θ2e(b−ρ)t. Differentiating both sides w.r.t.
time t and matching coefficients in common terms, we have

θ0 = −
γj+1

γ− 1
,

and
θ2 = γj (aγ− 1)b + ρ

ρa(γ− 1)
.

Substituting these back into the formula for k j+1(t),

k j+1(t) = −
γj+1

γ− 1
+ θ1ebt + γj (aγ− 1)b + ρ

ρa(γ− 1)
e(b−ρ)t.

Using the initial condition at time t = 0,

k j+1(0) = −
γj+1

γ− 1
+ θ1 + γj (aγ− 1)b + ρ

ρa(γ− 1)
,

we have,

θ1 = k j+1(0)− γj (aγ− 1)(b− ρ)

ρa(γ− 1)
.

37Note that here we assume that before capital j + 2 is used in producing consumption goods, say at t = τj+2,
capital j + 1 will only be used in (producing the consumption goods and) replicating itself, and not be used in
creating capital j+ 2. Alternatively, we can assume that any capital j+ 1 beyond the necessary amount in producing
consumption goods is converted immediately to capital j+ 2. The amount of capital j+ 2 obtained at t = τj+2 under
the two assumptions would be the same. In addition, as capital j + 2 will not be used in producing consumption
goods before t = τj+2, the price of capital j + 1 is determined as before, and the (implied) price of capital j + 2 is also
not altered.
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At time t = τg ≡ logγ
b−ρ ,

k j+1(τ
g) = − γj+1

γ− 1
+ θ1γ

b
b−ρ + γj (aγ− 1)b + ρ

ρa(γ− 1)
γ

= γj+1 + (k j+1(0)− γj x̃)γ
b

b−ρ + γj+1x̃

where x̃ ≡ (aγ−1)(b−ρ)
ρa(γ−1) .

The innovation phase comes next and lasts until t = logγ+log a
b−ρ . During the innovation phase,

k3
j (t) = 0 as capital j has been used up; and k1

j+1 = γj+1 as labor is all and only employed by
capital j + 1. Assume k3

j+1(t) = 0.38 The dynamics for k j+1(t) is

dk j+1(t) = b[k j+1(t)− γj+1]dt.

Solve this differential equation, and capital j + 1 satisfies

k j+1(t) = γj+1 + eb(t−τg)[k j+1(τ
g)− γj+1], for τg ≤ t ≤ τg + τn,

where k j+1(τ
g) is the amount of capital j + 1 at t = τg. When t = τg + τn =

logγ+log a
b−ρ , capital

j + 1 is

k j+1(τ
g + τn) = γj+1 + a

b
b−ρ [k j+1(τ

g)− γj+1].

At time t = τg + τn, γj+1 units of capital are employed in producing the consumption good,
and the remaining capital of vintage j + 1, k j+1(τ

g + τn)− γj+1, is converted to capital j + 2. It
follows that,

k j+2(τ
g + τn) =

1
a
[k j+1(τ

g + τn)− γj+1]

=
a

b
b−ρ

a
[k j+1(τ

g)− γj+1]

= a
ρ

b−ρ {[k j+1(0)− γj x̃]γ
b

b−ρ + γj+1x̃}

38Note that here we made the assumption that, before t = logγ+log a
b−ρ , capital j + 1 is only used in replicating

itself and not used in creating j + 2. Both activities satisfy the zero profit conditions. In essence, between t = logγ
b−ρ

and t = logγ+log a
b−ρ , various arrangements regarding what percentage of and when non-production capital j + 1 is

converted into capital j + 2 are equivalent as they generate the same amount of capital j + 2 at t = logγ+log a
b−ρ .
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again x̃ ≡ (aγ−1)(b−ρ)
ρa(γ−1) . Equivalently,

k j+2(τ
g + τn)

γj+1 = a
ρ

b−ρ

{
[
k j+1(0)

γj − x̃]γ
ρ

b−ρ + x̃
}

,

= (aγ)
ρ

b−ρ
k j+1(0)

γj − a
ρ

b−ρ (γ
ρ

b−ρ − 1)x̃,

≡ (aγ)
ρ

b−ρ
k j+1(0)

γj − x.

with x ≡ a
ρ

b−ρ (γ
ρ

b−ρ − 1)x̃ = a
ρ

b−ρ (γ
ρ

b−ρ − 1) (aγ−1)(b−ρ)
ρa(γ−1) . This is the formula we showed in the text.

From this equation one concludes that there exits a unique steady state value of the normal-
ized capital stock, k∗ ≡ kj+1(τj+1)

γj , with τj+1 the first time capital j + 1 used in the production of
consumption, which satisfies,

k∗ =
(aγ− 1)(b− ρ)

ρa(γ− 1)
(aγ)

ρ
b−ρ − a

ρ
b−ρ

(aγ)
ρ

b−ρ − 1
.

Denote by j = 0 the least advanced capital vintage. The economy enters a recurring cycle
when capital 1 is created and employed in production, call τ1 this moment. That k1(τ1) = k∗

follows from the Transversality condition. Note that each vintage of capital has a finite ’life
cycle’ in our model, it is therefore sufficient to show that the Transversality condition holds
at a certain point in the ’life cycle’ for each vintage of capital. Without loss of generality, we
choose the time when a vintage of capital is firstly introduced, i.e. τj+1 for capital j + 1. The
Transversality condition reads,

0 = lim
j→∞

e−ρτj+1
k j+1(τj+1)

c(τj+1)
= lim

j→∞
e−ρτ1(aγ)

−ρ
b−ρ j ∗

k j+1(τj+1)

γj

where the last equality follows from the fact that τj+1 = j ∗ log a+logγ
b−ρ + τ1 and c(τj+1) = γj.

From the law of motion for
kj+1(τj+1)

γj above, we have that
kj+1(τj+1)

γj − k∗ = (aγ)
ρ

b−ρ (
kj(τj)

γj−1 − k∗) =

(aγ)
ρ

b−ρ j
(k1(τ1)− k∗). That is,

kj+1(τj+1)

γj = k∗ + (aγ)
ρ

b−ρ j
(k1(τ1)− k∗). Substitute this formula into

the Transversality condition,

0 = lim
j→∞

e−ρτ1(aγ)
−ρ
b−ρ j ∗ [k∗ + (aγ)

ρ
b−ρ j

(k1(τ1)− k∗)],

= lim
j→∞

e−ρτ1 [k1(τ1)− k∗].
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It follows that k1(τ1) = k∗. The value of k1(τ1) is endogenously determined in the initial cycle, to
which we turn next.

Denote with k0(0) the initial value of capital 0. Start with the case 0 < k0(0)< 1. That is, there
is not enough initial capital to employ all labor force. We need to determine how to allocate the
initial capital, at t = 0, between producing consumption and self-accumulation. Denote with
k1

0(0) the units of capital allocated to produce consumption.

The price of capital in terms of current marginal utility of consumption is q0(t) = 1
bc(t) .39

Thus, consumption grows at the rate of b− ρ. The dynamics of k0(t) is

k̇0(t) = b[k0(t)− k1
0(t)]

= b[k0(t)− k1
0(0)e

(b−ρ)t]

The solution to this ordinary differential equation is of the form: k0(t) = φ0 + φ1ebt + φ2e(b−ρ)t.
Differentiating this expression and matching coefficients with the formula above gives

φ0 = 0, φ2 = k1
0(0)

ρ

b

Further, use the initial condition to obtain φ1 = k0(0)− b
ρ k1

0(0). This initial adoption phase ends

when c(τg
0 ) = k1

0(0)e
(b−ρ)τ

g
0 = 1, that is, at τ

g
0 = 1

b−ρ log 1
k1

0(0)
. The capital stock at t = τ

g
0 is

k0(τ
g
0 ) = k0(0) ∗ k1

0(0)
−b

b−ρ − b
ρ

k1
0(0)

−ρ
b−ρ +

b
ρ

.

The economy then enters its first innovation phase where the dynamics of capital is given by

k̇0(t) = b[k0(t)− 1].

The solution to this differential equation is

k0(t) = 1 + eb(t−τ
g
0 )[k0(τ

g
0 )− 1]

To determine the length of the first innovation phase, note that the price of capital of type j = 0
at t = τ

g
0 is q0(τ

g
0 ) =

1
bc(τg

0 )
= 1

b . From the zero profit condition for innovation, the (implicit) price

of capital of type j = 1 is now q∗1(τ
g
0 ) = aq0(τ

g
0 ) =

a
b . Denote with τ1 the first time when capital 1

39This is obtained from the Euler equation. The rental price of capital and the wage, in units of the current
consumption good, are 1 and 0, respectively.
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is created and employed in production. The length of this innovation phase is therefore τ1 − τ
g
0 .

The price of capital of type 1 at t = τ1 is q1(τ1) =
γ−1

γ−1/a
1
b . As the price of capital decreases at the

rate of b− ρ during the innovation phase, we have

q∗1(τ
g
0 )e
−(b−ρ)(τ1−τ

g
0 ) = q1(τ1)

The length of the phase is

τ1 − τ
g
0 =

1
b− ρ

log(
aγ− 1
γ− 1

)

Note that this is different from the length of an innovation phase after the economy enters the
recurring cycles. At t = τ1, the value of capital 0 is

k0(τ1) = 1 + (
aγ− 1
γ− 1

)
b

b−ρ [k0(τ
g
0 )− 1],

of which 1 unit is used in producing the consumption good, and the remaining k0(t1)− 1 units
converted into capital of type 1. Therefore the amount of capital 1 at t = τ1 is

k1(τ1) =
1
a
(

aγ− 1
γ− 1

)
b

b−ρ [k0(τ
g
0 )− 1]

=
1
a
(

aγ− 1
γ− 1

)
b

b−ρ [k0(0) ∗ k1
0(0)

−b
b−ρ − b

ρ
k1

0(0)
−ρ
b−ρ +

b
ρ
− 1]

=
1
a
(

aγ− 1
γ− 1

)
b

b−ρ

{
k0(0)

−ρ
b−ρ χ

−b
b−ρ [1− b

ρ
χ] +

b
ρ
− 1
}

where χ ≡ k1
0(0)

k0(0)
is the fraction of capital 0 used in producing the consumption good. The

Transversality condition we derived before requires that k1(τ1) = k∗. Note k1(τ1) is a strictly
decreasing function of χ. As χ → 0, k1(τ1) → ∞. On the other hand, as χ → 1, k1(τ1) →
1
a (

aγ−1
γ−1 )

b
b−ρ ( b

ρ − 1)(1− k0(0)
−ρ
b−ρ )< 0. The monotonicity of k1(τ1) guarantees existence and unique-

ness of a k1
0(0) that satisfies the Transversality condition.

C.2 Factor Shares for the Whole Economy

In the main text we focused on the factor shares of the consumption sector instead of those for the
whole economy as our simplifying assumptions set the share of labor equal to zero in the other
two sectors. Here we compute the labor share for the whole economy under these simplifying
assumptions and derive conditions under which the main results carry through. Consider an
adoption phase where capital j and j+ 1 are simultaneously used in production of consumption.
Denote with p(t) the relative price of the investment good to the consumption good. This will
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be the new capital j + 1, which is being accumulated and adopted while capital of type j is being
phased out. Recall that the price of capital j + 1 in units of current marginal utility is qj+1(t),
hence p(t) = qj+1(t)c(t). Denote with τj+1 the starting time of the adoption phase. At t = τj+1,
the gross LS in the whole economy is40

L̃S =
w

c + pk̇ j+1
=

w/c

1 + γ−1
γ−1/a

k̇ j+1

bc
.

where w
c is the LS in the consumption sector. As

k̇j+1
c (τj+1 is a constant, corresponding to the nor-

malized steady state for all j, the aggregate LS is a constant multiple of the consumption sector’s
LS. Hence, the aggregate LS declines together with w

c from t = τj+1 until the end of the adoption
phase, and the decline is independent of the capital vintage considered.

For t > τj+1,

L̃S(t) =
w(t)

c(t) + p(t)k̇ j+1(t)

=
w(t)/c(t)

1 + qj+1(t)k̇ j+1(t)

=
w(t)/c(t)

1 + γ−1
γ−1/a

γj

bc(t) [b(
kj+1(τj+1)

γj − x̄)eb(t−τj+1) + (b− ρ)x̄e(b−ρ)(t−τj+1)]

where x̄ ≡ (aγ−1)(b−ρ)
ρa(γ−1) is a constant. Recall that c(t) = γje(b−ρ)(t−τj+1) during the adoption phase.

Again
kj+1(τj+1)

γj is a constant in steady state. Therefore the denominator is a function of t− τj+1,
and independent of j itself. We have already shown that w(t)/c(t), the labor share in the con-
sumption sector, does not depend on j. Therefore, the aggregate labor share is also independent
of capital vintages and follows the pattern of the LS of the consumption sector during the whole
adoption phase.

During the innovation phase, the price of capital j + 1, in terms of the consumption good,
decreases at the rate of b− ρ and consumption remains stagnant at γj+1 while additional units

40In the model, the net value added is obtained by subtracting the value of depreciated capital in the innovation
sector from gross value added. It is straightforward to show that the net LS displays the same cycles as the gross
LS. Actually under the assumption that innovation occurs at the end of an innovation phase, the net and gross LS
equals each other during the whole innovation phase but the last moment.
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of capital of type j + 1 are accumulated in the ”background”. The aggregate LS is

L̃S(t) =
w(t)

c(t) + p(t)k̇ j+1(t)

=
w(t)/c(t)

1 + qj+1(t)k̇ j+1(t)

=
w(t)/c(t)

1 + γ−1
γ−1/a

γj

bc(t) e−(b−ρ)(t−τ
g
j+1)[beb(t−τ

g
j+1)(

kj+1(τ
g
j+1)

γj − γ)]

=
w(t)/c(t)

1 + γ−1
γ−1/a

γj+1

bc(t) [beρ(t−τ
g
j+1)(

kj+1(τ
g
j+1)

γj − γ)]

where τ
g
j+1 denotes the ending (resp. beginning) time of the adoption (resp. innovation) phase.

Same as in the adoption phase, both the numerator and denominator are independent of capital
vintages and so is the aggregate LS.

It is straightforward to see that the aggregate LS still declines in the adoption phase: total
output grows at an even faster rate than consumption during the adoption phase. During an
innovation phase, the wage rate grows at the rate of b− ρ to become, at the end of that phase,
γ times larger than that at the beginning. The nominal value of investment (in units of current
consumption good) grows at the rate ρ, and consumption remains constant. To retain the results
that the LS increases during the innovation phase, we need that total output grows less than γ

times during this phase, which is equivalent to,

1
γ− 1/a

[
k j+1(τ

g
j+1)

γj − γ](γ
ρ

b−ρ − γ) < 1.

Using the formula for k j+1(τ
g
j+1) calculated before, this condition can be further simplified as

1
1− 1/(aγ)

γ
ρ

b−ρ − 1

(aγ)
ρ

b−ρ − 1
(γ

ρ
b−ρ − γ) < 1

which is satisfied if a is sufficiently greater than 1, and γ is relatively close to 1.
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C.3 Proofs for the Extended Model with Endogenous Labor Supply

Consider again an adoption phase with capital j and j + 1, normalize its beginning at t = 0 and
let σj(t) be the fraction of labor employed by capital j. Total output of consumption is

γjl(t)σj(t) + γj+1l(t)(1− σj(t)) = c(t)

It follows that σj(t) =
γj+1−c(t)/l(t)

γj+1−γj =
γj+1− c(0)

l(0) eη(b−ρ)t

γj+1−γj = γ−eη(b−ρ)t

γ−1 , where the second equality holds
as consumption in the adoption phase increases at the rate of b− ρ, and employment decreases
at the rate (η− 1)(b− ρ). This implies that at t = logγ

η(b−ρ)
we have σj(t) = 0 and the adoption phase

ends. Hence, with endogenous labor supply the length of the adoption phase shrinks from logγ
b−ρ

to logγ
η(b−ρ)

.

At t = 0, the following three conditions hold

c(0) = γjl(0);
w(0)
c(0)

= ζl(0)
1

η−1 ; w(0) = γj a− 1
a− 1/γ

.

Therefore, we have41

l(0) = [
a− 1

a− 1/γ

1
ζ
]

η−1
η , c(0) = γjl(0).

At t = 0, a ∗ k j(0) units of capital j are converted into k j+1(0) units of capital j + 1. The
remaining amount, k1

j (t0) = γjl(0), of capital is used to produce consumption c(0) = γjl(0). At
t = τg, the labor supply, l(τg), is

l(τg) = l(0) ∗ e−(η−1)(b−ρ)
logγ

η(b−ρ) = l(0)γ−
η−1

η .

The price of capital j + 1 in units of current marginal utility, qj+1(τg), is

qj+1(τ
g) =

γ− 1
γ− 1/a

1
bc(τg)

,

Zero profits in the innovation sector implies qj+2(τ
g) = a ∗ qj+1(τ

g) = a γ−1
γ−1/a

1
bc(τg)

which, as
we have seen, is too high to make it profitable using capital j + 2 in the consumption sector.
As in the case of exogenous labor, the price of capital, qj+1(t), decreases during the innovation
phase driving down qj+2(t) as well. However, with endogenous labor supply, c(t) now increases

41Set ζ > a−1
a−1/γ .
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during the innovation phase that ends at t = τg + τn when

qj+1(τ
g + τn) =

1
a

γ− 1
γ− 1/a

1
bc(τg + τn)

.

The length of the innovation phase therefore satisfies

e(b−ρ)τn
= a

c(τg + τn)

c(τg)
= a

l(τg + τn)

l(τg)
.

According to the results established for the baseline model, the wage rate, in units of the cur-
rent consumption good, grows from w(τg) = γj a−1

a−1/γ at the beginning of an innovation phase,
to w(τg + τn) = γj+1 a−1

a−1/γ at its end. On the other hand, during the innovation phase a combi-
nation of the production function and the first order condition w.r.t. labor supply implies that
w(t) = ζγjl(t)

η
η−1 . Hence

l(τb + τn)

l(τg)
= γ

η−1
η .

Notice that l(τg + τn) = l(0), hence labor supply also follows a cycle. For later reference,
denote lH ≡ l(0) and lL ≡ l(τg), with lH > lL. The length of the innovation phase now is

τn =
log a + η−1

η logγ

b− ρ
,

which is longer than the value we computed under exogenous labor supply. Recall that τg =
logγ

η(b−ρ)
, with endogenous labor supply. The length of the whole cycle, however, remains un-

changed,

τg + τn =
logγ

η(b− ρ)
+

log a + η−1
η logγ

b− ρ
=

log a + logγ

b− ρ
,

The growth rate of consumption and employment, during the innovation phase, satisfies

gn =

η−1
η logγ

log a + η−1
η logγ

(b− ρ).

This is smaller than the growth rate of consumption in the adoption phase, which is b− ρ. On
the other hand, the LS behaves as in the exogenous labor supply case. That is, it decreases in the
adoption phase and it increases in the innovation phase.

The capital stock is calculated in the same way as in the baseline model, the only difference
being that we should now take into account the variation of total employment over time. Fol-
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lowing the same procedure as before, one can show that the amount of capital j+ 2 at t = τg + τm

and the amount of capital j + 1 at t = 0 satisfy the following relation,

k j+2(τ
g + τn)

γj+1 = (aγ)
ρ

b−ρ
k j+1(0)

γj − x,

with x > 0 defined as

x ≡ (aγ)
ρ

b−ρ [
θ̃1

γj (1− γ
− ρ/η

b−ρ ) +
θ̃2

γj (1− γ
− ηb−(η−1)ρ

η(b−ρ) )] +
θ̃3

γj aγ
− 1

η [(aγ
η−1

η )
ρ

b−ρ − 1
a
] + γlH,

and

θ̃1 ≡
γjlH

aρ(γ− 1)
[b(aγ− 1) + ρ];

θ̃2 ≡
γjlH

a(γ− 1)
γ

ab + (b− ρ)(η − 1)
b− (η − 1)(b− ρ)

;

θ̃3 ≡
b

b− gb γj+1lL.

Inspection shows that x is independent of j, hence the relation between
kj+2(tj+2)

γj+1 and
kj+1(tj+1)

γj

is qualitatively the same as in the exogenous labor supply case, depicted in Figure 3.4. As

(aγ)
ρ

b−ρ > 1, there exists a unique steady state value of capital, k∗, as in the baseline model.

To evaluate the initial condition consider the case 0 < k0(0) < k∗0 ≡ ak∗ + lH.42 Denote with
k1

0(0) the units of capital 0 used to produce the consumption good. Recall the production func-
tion is c(t) = min{k1

0(t), l0(t)}. At t = 0 the following equilibrium conditions hold

c = k1
0 = l0; 1 = r + w; w = ζl

η
η−1
0 .

Given k1
0(0), the wage and rental rates are w(0) = ζk1

0(0)
η

η−1 , and r(0) = 1−w(0). The implied
price of capital j = 0 is

q0(0) = [1− ζk1
0(0)

η
η−1 ]

1
bc(0)

.

Denote with τ1 the first time that capital j = 1 is used to produce consumption. The price of

42Here k∗0 is the amount of capital j = 0 when capital j = 1 begins to be employed in production. Same as in the
baseline model, how the economy behaves at t = 0 for k0(0) > k∗0 can be determined from the path of capital stock
derived for the case 0 < k0(0) < k∗0 .
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capital j = 0 for t ∈ [0,τ1] satisfies

q0(t) = [1− ζk1
0(t)

η
η−1 ]

1
bc(t)

.

On the other hand, we know from Proposition 1 that, at t = τ1,

q0(τ1) =
1
a

γ− 1
γ− 1/a

1
bc(τ1)

.

It follows that k1
0(τ1) = [ a−1

a−1/γ
1
ζ ]

η−1
η = lH.

During the initial phase, c(t) = k1
0(t). Capital j = 0 self-accumulates during this phase, which

implies that its price decreases over time at the rate b− ρ. That is, q0(t) = q0(0)e−(b−ρ)t. Equiva-
lently,

[k1
0(t)

−1 − ζk1
0(t)

1
η−1 ] = [k1

0(0)
−1 − ζk1

0(0)
1

η−1 ]e−(b−ρ)t. (1)

As h(y) ≡ y−1 − ζy
1

η−1 is a monotonically decreasing function in y, Equation (1) uniquely deter-
mines the value of k1

0(t) for a given k1
0(0).

The length of the initial phase, τ1, is endogenously determined by the choice of the initial
allocation. Specifically, from q0(τ1) = q0(0)e−(b−ρ)τ1 , τ1 should satisfy

τ1 =
1

b− ρ
log

a
k1

0(0)
−1 − ζk1

0(0)
1

η−1

γ−1
γ−1/a

1
lH

 .

The dynamics of k0(t) in the initial phase is

k̇0(t) = b[k0(t)− k1
0(t)], for t ∈ [0,τ1]

with k1
0(t) satisfying Equation (1). This ordinary differential equation, though not admitting an

analytical solution, uniquely determines the value of k0(t) for 0 < t ≤ τ1 given an initial value
k1

0(0). At t = τ1, the following boundary condition holds,

k1(τ1) =
1
a
[k0(τ1)− lH] = k∗.

where k∗ is the steady state value of the normalized capital stock calculated above.

Note that a larger value of k1
0(0) leads to, (a), a larger k1

0(t),∀t ∈ [0,τ1] and, consequently, a
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smaller k0(t)∀t ∈ [0,τ1], and, (b), a smaller value of τ1. As a result, with the choice of a larger
initial k1

0(0) the value of k0(τ1) and k1(τ1) would be smaller. Therefore the l.h.s. of the last
equation is a monotonically decreasing function of k1

0(0). Furthermore, when k1
0(0) → 0, the

value of τ1 → ∞ and k1(τ1)→ ∞ > k∗. When k1
0(0)→ k0(0), k0(τ1)→ k0(0) and the implied

value of k1(τ1) < k∗. These properties guarantee the existence of a unique value k1
0(0) satisfying

the boundary condition above.

C.4 Real Output Growth

The Baseline Model In our model economy total output is composed of consumption and
investment. Denote p(t) the relative price of investment good to consumption good in time t,
which is equal to the relative price of capital of type j + 1 to the consumption good, pj+1(t),
during an adoption phase in which capital j and j + 1 are employed. During an adoption phase,
p(t) is a constant at γ−1

γ−1/a
1
b . During an innovation phase, this relative price declines at the rate

b− ρ. The growth rate of real output (c(t) + p(t)i(t)) is

c(t)
c(t) + p(t)i(t)

ċ(t)
c(t)

+
p(t)i(t)

c(t) + p(t)i(t)
i̇(t)
i(t)

This formula for the growth rate of total output, expressed in consumption units, use as
base prices those of the first period. Without loss of generality, focus again on the growth cycle
starting with the adoption phase using capital j and j + 1 and normalize its initial time at t = 0.
During the adoption phase,

i(t) = k̇(t) = b[k j+1(t) +
γj+1

γ− 1
]− γj b(aγ− 1) + ρ

a(γ− 1)
e(b−ρ)t︸ ︷︷ ︸

ι(t)

It follows that
i̇(t)
i(t)

= b− (b− ρ)
ι(t)
k̇(t)

,

i.e. i(t) grows at a rate smaller than b during the adoption phase, and this rate varies over time.
Using the formula for capital stock derived earlier, one can obtain the expression of investment
for t ∈ [0,τg]. In particular, at t = 0,τg, we have

i(0) = bk j+1(0)︸ ︷︷ ︸
i1(0)

+γj b− ρ

a(γ− 1)︸ ︷︷ ︸
i2(0)

,
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and
i(τg) =

γ

a
ρ

b−ρ

bk j+1(0)︸ ︷︷ ︸
i1(τg)

+γj+1 b− ρ

a(γ− 1)︸ ︷︷ ︸
i2(τg)

The growth rate from i1(0) to i1(τg) is smaller than b− ρ, and the growth rate from i2(0) to
i2(τg) is b− ρ. We assume i(τg) > i(0), that is, the growth rate of investment is positive during
the adoption phase.43 Under this assumption, the growth rate of aggregate output during the
adoption phase is greater than c(t)

c(t)+pi(t)i(t)(b− ρ).

During the innovation phase, the growth rate of consumption is zero. Investment satisfies

i(t) = k̇ j+1(t) = b[k j+1(t)− γj+1]

Therefore, investment grows at the rate b, and real output grows at the rate

p(t)i(t)
c(t) + p(t)i(t)

b

Consumption grows at the rate b− ρ during an adoption phase and at rate 0 during an inno-
vation phase, while the growth rate of investment is larger during the innovation phase. In the
data the growth rate of real output is higher when consumption grows faster. In our model this
is equivalent to total output growing faster in the adoption than in the innovation phase, which
is satisfied when the following parametric restriction holds:

b
ρ

(aγ)
ρ

b−ρ − a
ρ

b−ρ

(aγ)
ρ

b−ρ − 1
< 1.

This is true whenever a is sufficiently greater than 1, i.e. when innovation is costly.

The extended model In the baseline model, investment grows at a slower rate in the adoption
phase than in the innovation phase. This is not the case in the extended model. To see this point,

43Using the expression for i(τg) and i(0), that i(τg) > i(0) requires the following restriction on parameters:

b(aγ−1)
ρ(γ−1)

γ
ρ

b−ρ −1

(aγ)
ρ

b−ρ −1
(a

ρ
b−ρ − γ) < 1.
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note that during an adoption phase when capital j and j + 1 coexist,

dk j+1(t) = bk2
j+1(t)dt− k3

j+1(t) +
k3

j (t)

a
= b[k j+1(t)− γj+1l(t)(1− σj(t))]dt− 0− γjd[l(t)σj(t)]dt

= bk j+1(t)dt− γjlH

a(γ− 1)

{
−[b(aγ− 1) + ρ]e(b−ρ)t + γ[ab + (b− ρ)(η − 1)]e−(η−1)(b−ρ)t)]

}
dt

Recall that i(t) = k̇ j+1(t). The growth rate of investment, i̇(t)/i(t) is

b− γjlH

γ− 1
[(b− ρ)(b(aγ− 1) + ρ)e(b−ρ)t + (η − 1)(b− ρ)γ(ab + (b− ρ)(η − 1))e−(η−1)(b−ρ)t]

k̇ j+1(t)

During the following innovation phase,

dk j+1(t) = b[k j+1(t)− γj+1l(t)]dt

= b[k j+1(t)− γj+1lLegbt]dt

which implies that the growth rate of investment is

b− b
γj+1lLgbegbt

k̇ j+1(t)

Comparison of the two growth rate formulas reveal that it cannot be established that the growth
rate of investment in one phase is uniformly greater or smaller than in the other.

For the same reason, we cannot conclude that the growth of output is uniformly greater in
one phase than in the other. We briefly discuss conditions to deliver the result that the average
growth rate of output in the adoption phase is larger than in the innovation phase. Consider the
growth cycle in which j and j + 1 are employed, denote τ j the beginning time of the cycle. Table
C.1 shows the values of consumption at the beginning of the adoption phase, at the end of it,
and at the beginning of the next adoption phase.

Note the relative price of investment, in terms of consumption at the three points in time
in Table C.1, is always a−1

a−1/γ
1
b . The average growth rate of output from t = τj to t = τj+1 is

logγ
logγ+log a (b− ρ). To obtain the result that the average output growth rate in the adoption phase
is larger than that in the innovation phase, we only need to establish that the average output
growth rate from t = τj to t = τj + τg is greater than logγ

logγ+log a (b − ρ). As shown before, the
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Table C.1: Values of Consumption and Investment

Time Consumption Investment

t = τj γj`H bk j+1(τj)
t = τj + τg γj+1`L b[k j+1(τj + τg)− γj+1`L]

t = τj+1 γj+1`H bk j+2(τj+1)

growth rate of output is equal to the weighted average of growth rates in consumption and in
investment

c(t)
c(t) + p(t)i(t)

ċ(t)
c(t)

+
p(t)i(t)

c(t) + p(t)i(t)
i̇(t)
i(t)

Note that consumption grows at the rate b − ρ during the adoption phase. We further as-
sume that the growth rate of investment is positive during an adoption phase.44 Under this
assumption, the growth rate expressed above is greater than logγ

logγ+log a (b− ρ) if

`H

`H +
kj+1(τj)

γj
γ−1

γ−1/a

>
logγ

logγ + log a

where
kj+1(τj)

γj is the steady state value of normalized capital stock in the extended model. This

condition is satisfied if (aγ)
ρ

b−ρ − 1 is sufficiently large (hence
kj+1(τj)

γj ) and a/γ is sufficiently
greater than 1.

44We do not give the exact parametric conditions for this assumption to hold here as it is rather long and cum-
bersome. Investment at the beginning of the adoption phase is bk j + 1(τj). Using the formula for capital stock, we

can derive that the investment at the end of the adoption phase equals to bk j+1(τj)γ
b

η(b−ρ) plus a term which might

be positive a negative. The average growth rate of investment is positive if γ
b

η(b−ρ) is sufficiently different from one.
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