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Abstract

We study the consequences of policy interventions when social norms are endogenous but costly
to change. In our environment a group faces a negative externality that it partially mitigates
through incentives in the form of punishments. In this setting policy interventions can have unex-
pected consequences. The most striking is that when the cost of bargaining is high introducing a
Pigouvian tax can increase output - yet in doing so increase welfare. An observer who saw that
an increase in a Pigouvian tax raised output might wrongly conclude that this harmed welfare
and that a larger tax increase would also raise output. This counter-intuitive impact on output is
demonstrated theoretically for a general model and found in case studies for public goods subsidies
and cartels.
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1. Introduction

This paper shows that outside interventions in environments where groups are governed by
social norms can have unexpected consequences. We can illustrate the main idea through a simple
story. Consider a negative production externality, for example, fishing in a lake. From the work
of Coase (1960), Ostrom (1990), and others, we know that it is likely that fishermen will self-
organize and use peer pressure to mitigate the externality. We refer to such an arrangement as
a social mechanism. Suppose that a naive planner unaware of the existence of such a mechanism
arrives on the scene and observing the negative externality introduces a tax designed to reduce
it. The fishermen then have a choice. They can negotiate a new social mechanism. If they do so
output will go down as expected. However, bargaining is costly and in the presence of the tax an
agreement may not be so valuable, so they may choose not to do this. They may instead maintain
the existing mechanism even though it is ill-adapted to the presence of a tax. Alternatively, as the
externality is mitigated by the tax anyway, rather than maintaining a costly system of monitoring
and punishment they may find it better to revert to non-cooperative behavior. Suppose this is the
case. While the tax will tend to lower output, abandoning social incentives will tend to increase it
and the overall effect is ambiguous. As we will show output may go up rather than down. This,
we imagine, will come as a surprise to the naive planner who will then conclude that the tax is a
failure, and perhaps get rid of it. That, however, might also be a mistake, as the increase in output
induced by the tax may nevertheless be coupled with increased welfare for the group. The goal
of this paper is to determine when such a story might be true, and what other consequences an
unanticipated intervention might have in the presence of a social mechanism.

Our model follows Townsend (1994) and Levine and Modica (2016) by modeling the self orga-
nization of a group as a mechanism design problem. Our setting is one of a production externality.
The group can establish an output quota, it has a noisy monitoring technology for observing whether
the quota is followed, and it can punish group members based on these signals. The new feature
that this paper incorporates is that social norms may be costly to redesign after an external in-
tervention: this introduces a stickiness in which social norms may be maintained when they are
no longer optimal, or abandoned altogether.4 We study a simple environment with two periods.
In the first period the group designs a social mechanism anticipating the second period will likely
be the same as the first. In the second period an unanticipated intervention may take place - for
example, the introduction of a Pigouvian tax. If there is an intervention the group may, at a cost,
design a new mechanism to cope with changed circumstances. It may at no cost choose to maintain
the quotas and punishments of the existing mechanism - although individuals will reoptimize in
response to changed circumstances. Finally, it may simply abandon any effort to police itself and
revert to the “law of the jungle,” which is to say to non-cooperative behavior.

4Levine (2012) gives evidence that social norms change very quickly when incentives for such a change are strong,
while Bigoni et al (2016) and Dell et al (2018) give evidence that social norms can be sticky when incentives for
change are weak.
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Our general environment applies to a variety of problems including that of a standard externality
with a Pigouvian tax, subsidies for the provision of a public good,and the Cournot setting of a cartel.
One of the strengths of the approach is that by covering a broad range of settings it enables us to
use data from one arena to make predictions about a less studied arena. That is: the problem of
colluding business firms in a cartel faced with a negative demand shock is no different than that
faced by a group facing a negative externality hit with a Pigouvian tax. We present evidence that
a negative demand shock to a cartel can increase output - for exactly the same reason a city with
local air pollution controls might increase pollution in response to a federal carbon tax. Similarly
our analysis applies to subsidies for public good provision. Here we present evidence in the arena
of foreign aid: a study by Bano (2012) shows that in some cases subsidies reduced public good
provision and that this was because existing monitoring arrangements were abandoned for the “law
of the jungle.”

We first consider the case of a Pigouvian tax in a stylized model. Here we provide a complete
analysis with closed-form solutions. If the size of the intervention is small the group does not
respond at all. There is a threshold at which output jumps. If bargaining cost is small output
jumps down with the new norm and remains lower than in the first period. This is the same as we
would expect if individuals faced adjustment costs as in the widely used menu cost model of Calvo
(1983). However if bargaining cost is large, for a range of interventions output jumps up, declining
as the tax goes up to values lower than in the first period. Here as the intervention increases in
size the first period norm becomes increasingly dysfunctional until it is better simply to revert to
the law of the jungle; and as long as the tax is not too high non-cooperative behavior can result
in higher output. This is the counterintuitive outcome: output can move in the wrong direction in
response to an intervention.

Unlike individualistic models, whether or not the tax is rebated lump sum to the group matters.
In particular if an outside agency intervenes to set a naive Pigouvian tax and keeps the proceeds
there will be underproduction as in the standard case. We also study welfare. If the group keeps
the tax revenue and production increases this is evidence of a welfare improvement: it means the
policy is a success notwithstanding the increase in production it brings about. The nature of the
rebate also matters in the attitude of the group towards taxes. If the group keeps the tax revenue
it is happy with higher taxes; if the outside agency keeps the taxes if the group is able to do so it
may wish to take political action to repeal the tax not withstanding the fact that the tax may be
an efficient Pigouvian one.

In the tax setting there is a clear trade-off between public policy in the form of taxes and the
use of social norms to mitigate the externality. To an extent this tradeoff has been examined in the
literature on regulation stemming from the work of Coase (1960): however the general tendency in
that literature is to either argue that the private sector is able to solve the problem, or to argue, as
for example Chari and Jones (2000), that the mechanism design problem is insurmountable, and
that only public policy can solve the problem. Here we take a more nuanced approach.

The second part of the paper examines the question of when we might expect to see an increase
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in output in response to an intervention that from both an individualistic and social perspective
“ought” to lower output. Here we allow general functional forms that encompass cartels as well as
tax externalities and general monitoring functions. We find that there are three features that lead
to anomalous output increases. First, relatively high bargaining costs. This means that when an
intervention takes place it is not worth reaching a new agreement. Second, an intermediate size of
intervention. If the intervention is small it is not worth changing the existing social norm; if it is large
even non-cooperative output will be less than the original quota. Finally, the monitoring function
should exhibit left insensitivity, at least approximately: this means that decreasing output below
the quota has little effect on the chances of an erroneous signal indicating the quota was violated.
Roughly speaking, if we think of the quota as being like a speed limit, say seventy kilometers per
hour, this means that the chances of getting a fine are pretty much the same regardless of whether
you drive sixty five or forty five.

2. The Model

In each period t = 1, 2 identical group members i ∈ [0, 1] engage in production choosing a real
valued level of output X ≥ xit ≥ 0. The utility of a member i in period t depends upon the real
valued state ωt ≥ 0, their own output, and the average output of the group xt =

∫
xitdi according

to u(ωt, xt, x
i
t).

The presence of xt represents an externality: we adopt the convention that the externality is
negative. Because of the externality the group collectively faces a mechanism design problem, and
we assume that incentives can be given to group members in the form of individual punishments
based on monitoring: the group can set a production quota yt and receives signals of whether
or not individual output exceeds the quota. Based on these signals it can impose punishments.
Specifically, monitoring generates a noisy signal zit ∈ {0, 1} where 0 means “good, likely respected
the quota” and 1 means “bad, likely exceeded the quota.” The probability of the bad signal is given
by a weakly increasing function Π(xit − yt) defined on the real line. We assume that punishments
must take place in the period in which the signal is received, and when the signal is bad the group
imposes an endogenous utility penalty of Pt.5 This may be in the form of social disapproval or even
in the form of monetary penalties.6

The social cost of the punishment Pt is ψPt where ψ > 0 could be greater or less than one.
For example, if the punishment is that group members are prohibited from drinking beer with the
culprit that might be costly to the culprit’s friends as well as the culprit. In this case ψ > 1.
Or it might be that the punishment is a monetary fine most of which is shared among the group

5In principle punishments could be issued even for a good signal: as incentives depend only on the difference
in punishment between the good and bad signal and punishments are costly this will not be part of an optimal
mechanism, so for notational simplicity we rule it out.

6In principle the group might also impose downward quotas against underproduction. Because the externality is
negative if there is any cost associated with this then the group prefers not to do so, so for notational simplicity we
do not consider this possibility.
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members. In that case there would be very little social loss so we would expect ψ < 1. In addition
to the social cost of punishment there may also be a cost ψ0 ≥ 0 of operating the monitoring system
- for example, sending spies to observe output. This cost is only incurred when Pt > 0 since if there
is no punishment there is no need for monitoring.

The tools available for mechanism design in period t consist of a quota yt and a punishment
for a bad signal Pt. The overall period t utility of a member i is u(ωt, xt, x

i
t)−Π(xit− yt)Pt. These

utilities define a game for the group members. If the mechanism designer chooses (yt, Pt) we denote
by X (yt, Pt) the set of xt such that xit = xt is a symmetric pure strategy Nash equilibrium of this
game. We refer to a triple (xt, yt, Pt) with xt ∈ X (yt, Pt) as an incentive compatible social norm.7 If
an incentive compatible social norm issues no punishments (Pt = 0) we call it non-cooperative. The
mechanism designer is benevolent and welfare from an incentive compatible social norm (xt, yt, Pt)

is given by
W (xt, yt, Pt) ≡ u(ωt, xt, xt)− ψΠ(xt − yt)Pt − ψ0 · 1{Pt > 0}.

2.1. Adjustment Costs and the Mechanism Design Problem

In the first period the state is a given ω1. In the second period there are two possibilities: it
may be the same as the first period with ω2 = ω1, or an intervention may take place in which
case ω2 > ω1. If an intervention occurs it is observed at the beginning of the second period. Our
focus will be on the case where the chance of intervention is a priori regarded as low, that is,
the intervention is “unanticipated” or that the mechanism designer is unaware of the possibility of
intervention.8

In the initial period t = 1 the group solves the mechanism design problem of choosing an
incentive compatible initial social norm (x1, y1, P1) as if the second period will be the same as the
first. As there is limited commitment and no connection between the two periods, this amounts to
ignoring the second period and maximizing period 1 welfare over incentive compatible social norms.

In period 2 if an intervention has occurred there are three possibilities:

1. (status quo) The initial design (y1, P1) can be costlessly maintained, with the designer choos-
ing any x2 such that (x2, y1, P1) is incentive compatible at ω2.

2. (non-cooperative) Any non-cooperative social norm (x2, y2, 0) may be chosen.

3. (re-optimize) For a fixed cost of F > 0 a new incentive compatible social norm (x2, y2, P2)

may be chosen.

The fixed costs of adjustment are in the spirit of menu costs in the macroeconomic literature as
in Calvo (1983).9 Here our basic presumption is that reverting to the non-cooperative norm is
costless while designing a new social norm is costly. Reverting to a non-cooperative social norm
is a decentralized decision: if it is evident that the non-cooperative social norm is superior to the

7In the language of contract theory it is an enforcement contract with costly state verification.
8See, for example, Modica and Rustichini (1994).
9The fixed costs might well depend on the size of the group: for example Levine and Modica (2017) assume it is

proportional to group size. Here we are keeping the size of the population fixed.
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alternatives there is no need to get together to discuss this and reach an agreement, implicitly
everyone has agreed in advance that in this case they will all go their own way. By contrast
developing a new social norm cannot be decentralized and the group must be reconvened to agree
upon a new social norm.10

2.2. Why Do Social Mechanisms Break Down?

A key element of our theory is the possibility that in response to an unanticipated change in
circumstances a social mechanism may be abandoned in favor of non-cooperative behavior. This
can have counter-intuitive consequences: in particular an adverse intervention that would ordinarily
reduce output might instead increase output. Is there evidence that social mechanisms do break
down in response to unanticipated changes? Is this due to bargaining costs? One type of social
mechanism that has been extensively studied by economists are cartels.

Our theory applied to cartels differs from those most common in the theory of repeated games.
In Green and Porter (1984), Rotemberg and Saloner (1986) or Abreu, Pearce and Stacchetti (1990)
price wars are a disciplinary device and are the anticipated consequence of real or apparent cheating.
In our account, as in the theoretical and empirical account of Harrington and Skrzypacz (2011),
cartel discipline is achieved through modest individual penalties for real or apparent cheating. In the
empirical literature our model of cartel breakdown appears to be the more relevant one. Indeed,
much of the empirical literature, for example the classical study of sugar cartels by Genesove
and Mullin (2001), is devoted to debunking the price war model. As an example we quote from
the survey by Levenstein and Suslow (2006): “after the adoption of an international price-fixing
agreement in the bromine industry, the response to violations in the agreement was a negotiated
punishment, usually a side-payment between firms, rather than the instigation of a price war... As
repeatedly discovered by these cartel members, the threat of Cournot reversion is an inefficient way
to sustain collusion.”

In our account, unlike in the repeated game literature, cartel breakdown occurs because of the
cost of bargaining in the face of unanticipated changes in circumstances. Again this seems to be
the relevant reason for cartel breakdown. Again from Levenstein and Suslow (2006) “Bargaining
problems were much more likely to undermine collusion than was secret cheating. Bargaining
problems affected virtually every cartel in the sample, ending about one-quarter of the cartel
episodes.” Their overall conclusion is “cartels break down in some cases because of cheating, but
more frequently because of entry, exogenous shocks, and dynamic changes within the industry.”

This evidence suggests that social mechanisms do revert to non-cooperative behavior because
of the cost of bargaining in the face of changed circumstances. The literature has not addressed the
issue of whether as a result, output increases in response to unanticipated adverse changes. Recently,

10Notice that we do not allow advance contingency planning. The idea is that to do so is costly. In this we follow
the literature on incomplete contracting such as Hart and Moore (1988) and rational inattention such as Sims (2003).
Our model is similar to those of unawareness as in Modica and Rustichini (1994) and in the spirit of Tirole (2009)
and Dye (1985) or costly contemplation such as Ergin and Sarver (2010).
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however, there has been a rather striking natural experiment. In response to the unanticipated
reduction in oil demand due to the covid-19 pandemic, OPEC+ attempted to negotiate reduced
quotas. On March 8, 2020 bargaining broke down. Subsequently cartel members announced plans
instead to increase output, and they did so. During the period December 21, 2019 to March 20,
2020 while the agreement was in effect, and including the period clearly prior to the Covid-19 shock,
OPEC output ranged from 27.8 to 28.6 millions of barrels per day. In the following month March
21 to April 20 OPEC output increased to 30.4 mb/d, a more than 6% increase in output.11 In brief
an unanticipated negative demand shock resulted in a substantial increase in cartel output.12

3. Pigou

We give a detailed analysis of a Pigouvian tax in a simple quadratic framework. Each individual
derives a private benefit from output U(xit) = (V + 1)xit − (V/2)(xit)

2 up to the satiation point
X = (V + 1)/V which we also take to be the upper limit on output. The negative externality
reduces the benefit by xt. In addition, the state ωt represents a Pigouvian tax a fraction of
which 0 ≤ α ≤ 1 is rebated in a lump sum. Overall individual utility is therefore u(ωt, xt, x

i
t) =

U(xit) − ωtxit − (1 − αωt)xt.We consider a simple monitoring technology: Π(xit − yt) = π > 0 if
xit ≤ yt and Π(xit − yt) = πB > π if xit > yt. Define the monitoring difficulty θ = π/(πB − π). We
assume moreover that ψ0 = 0 and ψ = 1.

To focus thinking, consider first the limiting case in which π = 0 and there are no monitoring
costs so that members can be forced to meet any target yt = xt. In this case the group simply
maximizes the utility u(ωt, xt, xt) = xt [V − (1− α)ωt − (V/2)xt]. As all the optimization problems
in this section are quadratic we collect the calculations in the Online Appendix, and report the
results here. The group chooses the first best xft = (V − (1 − α)ωt)/V with sufficiently large
punishments to deter deviation, and the corresponding welfare is uft = (V − (1 − α)ωt)

2/(2V ).
To avoid the uninteresting boundary case we assume that (1 − α)ωt ≤ V . To assure that the
non-cooperative output is higher than the first best we assume in addition that ω2 ≤ 1/α.

In the special case in which α = 1, so all the tax is rebated to the group this is the Pigouvian
solution xP = 1 with uP = V/2. Here we have a policy irrelevance result: when monitoring costs
are low and most of the tax is rebated to the group tax policy will have little effect on output of
an organized group.

3.1. Individual Optimality and Monitoring Costs

Consider next the problem of choosing an optimal first period social norm or re-optimizing in
the second period, each for a given value of ωt. It is useful to break the problem into two steps
and consider first the problem for fixed xt of choosing (yt, Pt) to minimize the monitoring cost

11Reported in the OPEC Monthly Oil Market Report for March and May 2020.
12It should be noted that the marginal cost to Saudi Arabia of extracting a barrel of oil (see knoema.com) is

estimated to be less than $3 while even with the substantial price fall that took place, the price remained well above
$20 so there is no issue here of a price war in the sense of producing below marginal cost.
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M(xt) = πPt subject to incentive compatibility. With this simple monitoring technology if an
individual decides to deviate from xt there is a unique optimal deviation determined by ignoring
the punishment: we denote this by xBt . If (xt, yt, Pt) is an optimal social norm then we call yt an
optimal quota.

Theorem 1. The optimal deviation is xBt = (V + 1− ωt)/V . If xt < xBt then the optimal quota is
yt = xt and monitoring cost is given by Mt(xt) = θ(u(ωt, xt, x

B
t )− u(ωt, xt, xt)).

Notice that the individual optimum in the absence of penalty is independent of xt: in other
words the non-cooperative social norm also generates output xNt = xBt . Note also that xBt decreases
linearly in ωt.

Proof. The only feasible quota is yt = xt because for any other quota group members can increase
output without changing the probability of being punished. The optimal deviation xBt is the max-
imizer of u(ωt, xt, x

i
t) with respect to xit. Hence the greatest gain from deviating is u(ωt, xt, x

B
t )−

u(ωt, xt, xt). The incentive constraint is therefore (πB − π)Pt ≥ u(ωt, xt, x
B
t ) − u(ωt, xt, xt). Mon-

itoring cost is minimized when Pt is minimized, so the optimal punishment is determined when
the incentive constraint holds with equality. Solving and plugging into monitoring cost yields the
result.

3.2. Optimal Social Mechanisms

Our main interest is in the response in the second period when there is an intervention: which
social norm is chosen and what is the consequence for output?

The first period and re-optimal second period problem can be conveniently expressed in terms
of monitoring cost as the problem of choosing output xt to maximize u(ωt, xt, xt)−Mt(xt). Denote
the solution to the problem by xRt , uRt . The non-cooperative solution we denote by xNt , uNt . We
must also consider the status quo solution in the second period with solution xS2 , u

S
2 . The situation

is described in Figure 3.1. For each of the different social norms as a function of ω2 we compute
the utility gain over the non-cooperative social norm. The dotted reoptimized gain curve shows
how much utility is gained over the non-cooperative social norm by reoptimizing; it is necessarily
non-negative andreaches a minimum of zero at ω2 = 1/α. The bold line which coincides with the
x-axis is the net utility gain from the non-cooperative social norm over itself, therefore 0.

3.2.1. Status Quo versus Non-Cooperative

The utility gain from the status quo social norm over the non-cooperative social norm is uS2−uN2 .
This is shown by the piecewise linear dashed status quo gain curve. The main result of this paper
is that as the tax ω2 is increased to the point ωS where the status quo gain curve reaches zero and
the group switches social norms, output jumps up.

To see why this is, increase the tax rate starting at ω2 = ω1 where the tax rate in the second
period is the same as the first. Here the status quo gain is the same as the reoptimized gain and

8



Figure 3.1: Optimal Social Mechanisms

ω2

1/αω

u

uR − uN Reoptimized gain

ω1 ωSN

uS − uN Status quo gainωS

large F

small F

ωR

ωF ωF

so it is strictly positive. This implies that the non-cooperative output xN is strictly bigger than
the status quo output which is the first period output x1. There are two crucial facts. The first is
that as the tax rate increases the status quo output remains stuck at x1 while the non-cooperative
output drops until the two become equal at some tax rate ωSN . The second is that the point at
which the group switches from the status quo to the non-cooperative output ωS lies to the left of
ωSN so that the switch induces an increase in output from x1 to xN .

The key to these results is that increases in ω2 decrease the incentive to deviate. This means
that non-cooperative output falls as ω2 increases. However, as long as the incentive to deviate is
positive the status quo output remains stuck at x1. In other words until we reach ωSN the status
quo output is x1 and the non-cooperative output is larger and decreasing with ω2. However, at
ωSN the status quo must be strictly worse than the non-cooperative social norm because the status
quo social norm incurs an unnecessary monitoring cost in order to achieve the same output. This
gives the conclusion that the point of indifference between the two norms ωS lies to the left of ωSN .
That is, the switch from status quo to non-cooperative norms takes place where the status quo
output is still equal to the first period output x1 and the non-cooperative output is strictly higher.
This upward jump when switching from the status quo to non-cooperative social norm is our main
result.

3.3. The Role of Bargaining Costs

If uRt − uNt > F then it is better to reoptimize than use the non-cooperative social norm and
conversely. Since uRt −uNt is downwards sloping, there is a unique tax rate ωF where uRt −uNt = F .
For lower tax rates ω2 < ωF it is better to reoptimize, for higher tax rates ω2 > ωF to use the
non-cooperative social norm. The interaction of bargaining costs with the status quo social norm
depends on the size of F .
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3.3.1. Large Bargaining Costs

We say that F is large when ωF < ωS The double arrows show the size of F . Observe that in
this case F is necessarily larger than uRt − uS2 (the difference between the reoptimized and status
quo gain curves) at ωF , since uS2 −uN2 > 0 there. And the difference uRt −uS2 shrinks going left. So
for tax rates no greater than ωF the status quo social norm is better than re-optimizing. Since the
non-cooperative social norm is better at higher tax rates it is never optimal to re-optimize. As ω2

increases from ω1 then we have the following consequences for choice of social norm and output.
For ω1 ≤ ω2 < ωS the status quo norm is chosen and output remains fixed at x1. For higher values
of ω2 > ωS it is optimal to switch to the non-cooperative social norm. In the range ωS < ω2 < ωSN

output at the non-cooperative social norm is higher than x1. This means that optimal output
actually jumps up, then decreases until it again reaches x1 at ω2 = ωSN . After that it falls below
x1.

Output that increases in response to an intervention is the most unexpected and striking feature
of our model: we will subsequently investigate how robust a phenomenon it might be. The idea, as
indicated in the introduction, is a simple one: with high bargaining costs a change in circumstances
can lead to a breakdown of the existing social norm and this can increase output.

3.3.2. Small Bargaining Costs

We say that F is small when ωF > ωSN . To the right the non-cooperative social norm is best.
However, it may be that ωF > ω so this point may never be reached: it depends upon α as we
shall discuss subsequently. In case ωF < ω there will be a switch from the reoptimized social norm
to the non-cooperative social norm at ωF and output will jump up - but cannot rise so high as x1
since ωF lies to the right of ωSN . The point is that as the tax rate increases the non-cooperative
equilibrium gets close to the first best anyway, so the gain to reoptimizing is small and not worth
bargaining over.

To the left of ωF the non-cooperative social norm is never used. To see when the status quo
social norm is used, we need to find the unique point ωR where uRt −uSt = F , which as shown in the
diagram is also the distance between the reoptimized and status quo gain curves. Since at ω2 = ω1

we have uRt = uSt this point always lies to the right of ω1 and from the fact that ωF lies to the right
of ωSN it must also be that ωR lies to the left of ωS as shown in the diagram.

Initially then, for ω1 ≤ ω2 < ωR the status quo is maintained and output remains fixed. As ω2

rises into the range ωR < ω2 < ωF the status quo is abandoned in favor of re-optimization. Output
jumps down, then continues to declines. Eventually if ωF is reached it will jump up again to the
non-cooperative level, although not as high as x1, and then again start to decline.

The case in which ωS < ωF < ωSN is similar to ωF > ωSN : - as ω2 goes up the transition
is from status quo to reoptimization to non-cooperative - except that when ωF is reached and
output jumps up it jumps to a level higher than the original level of output at ω1. It then declines,
eventually falling below the original level.

What is striking in this case is what happens in the vicinity of ωF . For slightly lower ω2 output
has dropped. For slightly higher ω2 output has increased. Suppose that two different empirical
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studies were conducted, in different but very similar locations, for example. Never-the-less if in
one location ω2 was just below ωF and in the other just above, the first study would conclude that
intervention lowers output while the second would conclude that the intervention raises output.
While this may not be a frequent occurrence it is good to be aware of the possibility.

3.4. The Lump Sum Rebate, Overshooting and Tax Repeal

The lump sum rebate is not neutral for either behavior or welfare. In particular when α = 1

the group favors taxes over quotas up to the Pigouvian level. To understand this, observe that for
α = 1 not only must all taxes be rebated to the group but the tax system must be lossless.13 In
this case both taxes and quotas mitigate the externality, but taxes are superior to quotas because
a tax unlike a quota can be enforced costlessly. With quotas production is at most at the non-
cooperative level for the given tax, and possibly less, but always greater than the Pigouvian output
of xP = 1. Contrast this to the situation in which α = 0 (say). Here a naive planner might set
the Pigouvian tax. If bargaining cost is small and the group reoptimizes this will result in output
xR2 = 1− 1/(V (1 + θ)),that is the group will produce too little in an effort to avoid the tax loss.

This undershooting result, however, understates the potential for error in setting a Pigouvian
tax when it is not rebated to the group. A group unlike an individual can take political action. Let
us extend the model to allow this possibility. Group utility is convex in the tax rate, so the optimal
tax rate is either 0 or so high that output xR3 = 0. A calculation shows that zero output is strictly
optimal if an only if V < θ/(1 + θ).The takeaway is that with α = 0 if the cost of organizing to do
so is low the group will always repeal the tax: if V is large relative to monitoring difficulty it will
eliminate the tax. Perhaps more surprising, if less likely, is that if V is small relative to monitoring
difficulty it will set the tax high and shut down production - an extreme form of overshooting.

An interesting example of a group responding to the naive imposition of Pigouvian taxes by
engaging in tax repeal is the case of the French “yellow vests.” In this instance output xit represents
driving speed, while the intervention ω2 is the inverse of the speed limit. On July 1, 2018 the
French Federal Government lowered the speed limit on secondary highways from 90 km/h to 80
km/h ostensibly to reduce highway accidents. The bulk of the impact fell on rural communities
where there are no primary highways. Although driving is to an extent anonymous, there are
informal social norms, and drivers who are perceived to drive excessively fast are often punished.14

As drivers observe one another well, we hypothesize that monitoring difficulty θ is relatively low.
Moreover, α < 1: the speed camera revenue is not returned to rural drivers who receive only an
indirect benefit. Finally, F was quite low due to the advent of social media: Facebook played a
key role in the organization of the yellow vests. Hence our theory says that if they could do so at
low cost they would organize not only a new driving speed norm, but also eliminate the tax. In

13Real tax systems like informal enforcement systems have costs associated with them. In countries with strong state
capacity the assumption that there are few such costs may be a reasonable approximation: much of tax infrastructure
is a sunk cost so irrelevant, and tax authorities have legal access to information such as banking records that the
private sector does not.

14While fictional, the Damián Szifron film “Relatos Salvajes” illustrates the idea well.

11



fact the yellow vests did act to “repeal” the tax. The rate of traffic camera destruction jumped by
400% and in the year following about 75% of all traffic cameras in France were destroyed.15

3.5. Welfare and Late Parents

What is particularly striking is that with the full lump sum rebate (α = 1) welfare is unam-
biguously increasing in the tax rate (up to the Pigiouvian level ω2 = 1). In particular if bargaining
costs are non-negligible so that output jumps up - at ωF or ωS as the case may be - the increase
in output nevertheless increases welfare. That is, despite the increased externality due to higher
output welfare increases because of the decrease in monitoring costs.

An interesting case in point is the study of Gneezy and Rustichini (2000). They studied the
introduction of modest fine for picking up children late at a day-care center. They observed that
this resulted in more parents picking up their children late - the opposite of the expected and
intended effect. In our terminology the intervention is the level of the fine. Initially there was no
fine ω1 = 0, then one was imposed ω2 > 0. As there was no prior warning or discussion of the fine,
it is reasonable to think it was unanticipated. Moreover, as the fine was introduced suddenly and
without explanation it might well have been anticipated to be of short duration (as in fact it was)
so that it would not be worth renegotiating to identify the re-optimal social norm reducing lateness.
Hence our theory predicts if ω2 were chosen slightly larger than the switching point indeed more
parents would pick up their children late.

Authors including Gneezy and Rustichini (2000) and Benabou and Tirole (2006) who have
discussed the increased lateness have assumed that this resulted in a drop in welfare. A day-care
center, however, is a closed system in which the school is supported by fees from the parents and
different schools compete with each other. Implicitly, the money from fines either reduces what
parents have to pay, or increases the services they receive. In other words, in this setting we think
α = 1. If this is the case then the assumption that welfare decreased is wrong: in fact it went up.
This highlights the importance of knowing whether social norms are involved and the role of the
lump sum rebate.

Other theories than ours have been used to explain the increase in lateness: one of the best
worked out is that of Benabou and Tirole (2006). Their idea is that in the absence of fines, picking
up children on time serves a valuable self-signaling purpose of virtue. With fines, the signaling value
of being on time is lowered enough that it becomes worthwhile to be a little late and pay the fine.
In contrast in our account prior to the fine there was an informal system of enforcement. Teachers
scolded parents who were late and complained to their peers and other parents about people who
were persistently late. After the fines were introduced this stopped and parents simply paid their
fines. That is, there was punishment before but not after. While this is plausible we do not know
whether or not it was the case, and hence we do not have direct evidence about the merits of our

15Private communication from Pierre Boyer. Our account is based on Boyer et al (2019) who documents both the
link between the change in speed limit and the yellow vest movement, as well as the systematic way in which that
group organized itself.
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theory versus that of Benabou and Tirole (2006). As the welfare analysis for the two theories is
opposite it is of importance to know.

The key lesson here involves the way in which field experiments are conducted. It was possible
for Gneezy and Rustichini (2000) to have arranged the experiment to observe punishment before
and after. This could have been done by direct observation of teacher behavior at the pickup point
- did they scold parents before, but not after? It could also have been done by a before and after
survey instrument asking parents and teachers about their expectations of the response to late
pickup. In other words: it would be desirable if field experiments where social norms might be
involved attempted to ascertain the presence of informal punishments and if this was changed by
intervention.

In existing analyses an upward jump in output in response to a Pigouvian tax is regarded as a
failure of policy. The goal of the policy is to reduce output in the face of an externality. But that
analysis may miss the mark. If there are informal punishments and α is large, increased output is
an indication that the policy has a desirable effect. While the increase in output has a negative
consequence for welfare, overall welfare goes up because by switching to the non-cooperative norm
the cost of monitoring is avoided and this more than makes up for the loss from increased output.

3.6. Costly Bargaining in the First Period

Implicitly we have assumed that while there is a cost F of introducing a re-optimal social
mechanism in the second period there is no fixed cost of choosing the first period optimal social
norm. In the the type of applications we have in mind we think this assumption makes sense.
The “first period” represents a long ongoing situation while the “second period” represents an
unanticipated break with the past. In an ongoing situation there is time for experimentation with
different mechanisms and discussion of what might be the best mechanism. Over time people meet
for all sorts of reasons and it is of low cost to discuss among other things the implementation
of a social mechanism. In the experimental research of Fehr and Gachter (2000) we see that the
solution to a social mechanism problem develops slowly over time. All of this suggests that in the
“first period” an optimal social mechanism is likely to be developed. By contrast in the immediate
aftermath of an unanticipated change developing a re-optimal social mechanism would require crash
meetings and leisurely experimentation would have to be replaced by a more careful assessment of
the situation. All of this suggests that it makes sense to think of re-optimization as more costly than
the initial optimization. It also suggests there might be a “period three” after the unanticipated
change in which the use of the status quo or non-cooperative mechanism in the second period is
replaced by a reoptimal social norm.

While we think this assumption makes sense it is by no means crucial to the analysis.16 As
shown in the diagram uR2 − uN2 is decreasing in the tax ω2 . Suppose in fact that F applies in the
first period. It will be optimal to introduce the optimal social norm in the first period provided

16It may be, for example, that it is easier to agree to a revised contract than to create one whole cloth, so ultimately
the ratio of costs between the first and second period is an empirical one.
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that uR1 − uN1 ≥ F . This simply means that ωF lies to the right of ω1 and this is exactly the case
we have studied. That is: to the right of ωF it is optimal to use the non-cooperative social norm
in place of the reoptimal social norm, and to the left it is optimal to use the reoptimal social norm.
As long as ω1 < ωF it will be optimal to introduce the optimal social norm in the first period.

4. When Does Output Increase?

We now consider more general utility and monitoring functions. Our goal is to find conditions
under which an intervention induces an increase rather than a decline in output. For this to be
the case we know that F must be reasonably large so that the switch when it takes place is to
the non-cooperative equilibrium not to the re-optimal social norm. We must also consider the role
of the fixed cost of monitoring ψ0. If this is too large then it will already be optimal to use the
non-cooperative equilibrium in the first period and the model is a standard one. We are interested
in the case where ψ0 is not too large. Hence by F is large, ψ0 not too large we mean that F is
large enough that it is not optimal to reoptimize and that ψ0 is small enough that it is optimal to
optimize in the first period.

In the analysis which follows we will see that the key property of monitoring technology is
that of left-insensitivity : lowering output below the quota does not reduce the chances of being
caught. This was the case in the Pigou example. Our ultimate goal will be to establish that output
increases in response to shocks can occur when the monitoring technology is left insensitive or at
least approximately left insensitive.

4.1. Regularity of Utility

We impose relatively standard conditions on u(ωt, xt, x
i
t) that incorporate the convention that

the externality is negative and ensure that the Nash equilibrium and social optimization problem
in the absence of monitoring are well-behaved.

To capture the convention that the externality is negative we assume that D2u(ωt, xt, xt) < 0.
To capture the convention that increasing ωt mitigates the externality we assume that such increases
reduce the individual incentive to produce more, that is, D31u(ωt, xt, x

i
t) < 0. These are conventions

in the sense that we could work as well with positive externalities by changing the sign of xit and
in the sense that it does not matter which direction of change in ωt mitigates the externality.

We next make assumptions that guarantee that both the social planner problem and individual
optimizations problems are well-behaved. As indicated these are standard.

First, we assume that the social objective u(ωt, xt, xt) is concave, that is, D22u(ωt, xt, xt) +

2D23u(ωt, xt, xt) + D33u(ωt, xt, xt) < 0. In addition we assume that there is an interior social
optimum 0 < xft < X where D2u(ωt, x

f
t , x

f
t ) + D3u(ωt, x

f
t , x

f
t ) = 0. Because the objective is

concave, this is unique.
Second, we ensure that the non-cooperative mechanism has a unique and well-behaved symmet-

ric pure strategy equilibrium. For existence we require concavity in own action D33u(ωt, xt, x
i
t) < 0.

To ensure that the equilibrium is well-behaved we add the regularity condition thatD33u(ωt, xt, x
i
t)+
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D23u(ωt, xt, x
i
t) has the same sign (negative) as D33u(ωt, xt, x

i
t) (it suffices that D23(u(ωt, xt, x

i
t) ≤

0). This implies that the non-cooperative mechanism has a unique equilibrium output level and that
it lies above the social optimum. Lastly, we assume that D3u(ω1, X,X) < 0 so that non-cooperative
output is interior at ω1.

Our final assumption is that there is a sufficiently large intervention ω that the corresponding
non-cooperative output is lower than at the social optimum in the first period. Specifically, we
assume that D3u(ω, xf1 , x

f
1) ≤ 0.

When these assumptions are satisfied we say that utility is regular. We assume from this point
on that this is the case. It is easily checked that it is so in the Pigou analysis of the previous section.
The next result is completely standard.

Theorem 2. If utility is regular then for ωt ≥ ω1 there is a unique non-cooperative output level
xNt > xft strictly decreasing in ωt when positive. Moreover the first best xft is weakly decreasing in
ωt.

For some results we will require an additional condition. We say that utility is separable if
D33u(ωt, xt, x

i
t) = κ(xit), that is, independent of ωt, xt. This is certainly true for any quadratic

utility function u(ωt, xt, x
i
t) such as that in the Pigouvian example.

4.2. Cournot

We check that the standard Cournot model without entry has utility that is both regular
and separable utility. Utility is u(ωt, xt, x

i
t) = (p(xt)− ωt)xit − c(xit); so in this context ωt is a

negative shock to demand. We suppose as standard that p′(xt) < 0, c′(xit) > 0, c′′(xit) < 0,
and for a monopolist the objective (p(xt)− ωt)xt − c(xt) is strictly concave. We list below our
assumptions about the externality and show that they are satisfied in the standard Cournot model:
for comparison we show also that they are satisfied in Pigouvian case where αωt < 1.

Cournot Pigou

D2u(ωt, xt, xt) < 0 p′(xt)xt < 0 −(1− αωt) < 0

D31u(ωt, xt, x
i
t) < 0 −1 < 0 −1 < 0

D23u(ωt, xt, x
i
t) ≤ 0 p′(xt) < 0 0

D33u(ωt, xt, x
i
t) = κ(xit) −c′′(xit) −V

4.3. Properties of Optimal Norms

Our goal is to study two properties. The first property is the existence of the relevant social
norms.

Definition 1. Property (E) is said to hold if for all ωt ≥ ω1 a reoptimal social norm (xt, yt, Pt)

exists, and if for any (x1, y1, P1) optimal with respect to ω1 and any ω2 ≥ ω1 a unique welfare
maximizing incentive compatible social norm (x2, y1, P1) exists. The latter is the status quo social
norm.
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The property central to the paper is the upwards jump.

Definition 2. Property (U) is said to hold if property (E) holds and for any (x1, y1, P1) optimal
with respect to ω1 there exists an open interval of ω2 defined by ω1 < ωa < ω2 < ωb such that for
any such ω2 the optimal choice of social norm is the non-cooperative social norm and xN2 > x1.

Whether these properties hold depend upon the monitoring technology, which we discuss next.

4.4. Monitoring Technology

Recall that in the Pigou example we took monitoring to be represented by a step function: the
probability of being caught was Π(xit−yt) = π for xit−yt ≤ 0 and πB > π for xit > yt. This is clearly
left insensitive: below the quota the chances of being caught are not reduced. It is not, however,
smooth, having a discontinuity at zero. To arrive at sensible generalizations we examine some
concrete examples of three different types of error, whose salient features we will try to capture.
The first is a gross error, which can be thought of as a constant, and as such it is obviously smooth
and left insensitive. The second is a measurement error, which is the additive error most commonly
used in economic models; this can be is smooth and not left insensitive but also vice versa. Finally,
there are secret sales which as we will see are left insensitive but not smooth, as in the Pigou
example.

Let us start with a simple example of enforcing a speed limit with a radar system. Gross error is
an error that is independent of the speed, for example the wrong car is identified by a license plate
reader and the individual who receives the fine is not the person that committed the offense. Let
us assume that the probability that the wrong car is observed is 0 < π/q < 1 and the probability
wrong car is speeding is 0 < q ≤ 1. Then the probability of gross error is π. As this is constant it
is both left insensitive and smooth. In a context where the penalty is a fine which benefits other
group members, as may be the case in cartels, members have an incentive to make false accusations
about violations by other members, and this can be an additional source of gross error.

Measurement error is the usual type of error considered in economic models: if the actual speed
is xit the observed speed is xit + ηt where the random error ηt is independent of yt and normal with
mean 0. The radar system reports the driver if the observed speed exceeds a threshold yt. That
is, a bad signal is received if ηt > −

(
xit − yt

)
. If there is no gross error the bad signal occurs with

probability 1 − H(−(xit − yt)) where H(ηt) is the normal cdf. The overall probability of a bad
signal is Π(xit − yt) = π + (1 − π/q)

(
1−H(−(xit − yt))

)
. In particular Π(xit − yt) is smooth, but

it is not left insensitive. A crucial consideration is this: with smooth measurement error incentive
compatible output xt need not be equal to the quota yt; and since xt is chosen endogenously the
“quota” itself is really just a shifter of the signalling technology. That is in Π(xit − yt) changing yt
simply changes the benchmark against which xit is measured.

With this in mind, suppose as another example that measurement error ηt is uniform on [−γ, γ]

for γ > 0. Since yt is simply a benchmark, we assume that here the radar system reports the driver
if the the observed speed xit + ηt exceeds a threshold yt + γ. Letting h = xit − yt, then Π(h) is
continuous: it is constant and equal to π for h ≤ 0, it is linear for 0 ≤ h ≤ 2γ and it is constant
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and equal to π + 1 − π/q for h > 2γ. In this case measurement error is left continuous but not
smooth (the derivative is discontinuous at 0 and at 2γ).

Finally, we consider secret sales. A natural way to enforce a quota is to require transparency:
that output or sales be done in such a way that they are easily observed. This is a common rule in
cartels.17 If a member adheres to the quota there is no reason not to comply with the transparency
requirement. On the other hand if a member wishes to violate the quota then they will try to
conceal their sales in order to avoid being punished. Hence the key monitoring problem is to
determine whether or not secret sales took place. This naturally gives rise to left insensitivity: if
the quota is adhered to no secret sales are made and negative signals reflect only gross errors, for
example, false or mistaken accusations of making secret sales. If the quota is violated then secret
sales take place: if a member is engaging in under-the-table transactions there is a chance word
will leak out and they will be detected. The simple Pigou monitoring technology is an example.
Generally speaking, however, we would expect that the more secret sales take place, the greater
the chance of getting caught. We would also expect that there would be diminishing returns: as
secret sales increase the chances of being caught increase at a decreasing rate. Secret sales are given
by h = xit − yt if this is positive, so we can model the probability of being caught by a function
H(h) which is zero for h ≤ 0, that jumps up at zero as there is some chance that word leaks out
about under-the-table dealings, and is increasing and concave for h > 0 to reflect the increased
chance of getting caught with diminishing returns. Allowing for gross error, the overall monitoring
technology is then

Π(h) = π + (1− π/q) · 1{h > 0}H(h).

Notice that this satisfies the property of left insensitivity but is not smooth.
We now want to make a general assumption about Π(h) that captures these examples. We have

seen concavity for positive values, possibly left insensitivity, and possibly discontinuity or non-
differentiability at zero. Notice that unless Π(h) is constant it cannot be either concave or convex
since no non-constant function bounded below on the real line is concave and no non-constant
function bounded above on the real line is convex. Indeed, the boundaries force in a certain sense
convexity to the left and concavity to the right. The simplest assumption consistent with this is
that there is a single inflection point: that to the left of the inflection point Π(h) is convex and to
the right concave. This corresponds to a measurement error that has a single-peaked density. We
slightly weaken the single inflection point assumption to allow for the piecewise linearity seen in
the uniform measurement error example. Specifically:

Definition 3. We say monitoring is regular if h = 0 is the smallest number for which Π(h) is
concave to the right and for h ≤ 0 we have Π(h) smooth and weakly convex while for h > 0

it is smooth and weakly concave. We do not assume that the function is differentiable or even
continuous at 0; we do assume that for h > 0 we have Π(h) > Π(0) and that Π(h) = Π+(h) which

17See, for example, Genesove and Mullin (2001).
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is a smooth, weakly concave function. 18 Finally, we define π = limh→−∞Π(h) and, this is crucial,
require that π > 0.

We assume from this point on that monitoring is regular.
In analyzing the mechanism design problem a key role is played by the monitoring cost function

M(xt) ≡ ψminyt,P PΠ(xt − yt) subject to the incentive constraint that

u(ωt, xt, xt)− PΠ(xt − yt) ≥ u(ωt, xt, x
i
t)− PΠ(xit − yt)

for all 0 ≤ xit ≤ X. With this function we can formulate the re-optimization problem as maximizing
u(ωt, xt, xt) −M(xt). Unfortunately, even if Π(h) is smooth M(xt) is not a particularly pleasant
object: since Π(h) cannot be convex M(xt) is not in general convex either, so that u(ωt, xt, xt) −
M(xt) is not in general concave or even single-peaked. Never-the-less we will establish that several
of the key results from the quadratic Pigou model carry over to the general model.

We next formally define the key property of left insensitivity:

Definition 4. We say that regular monitoring is left insensitive if for h ≤ 0 we have Π(h) = π.

Observe that left insensitivity does not require that Π(h) be discontinuous at zero, but does
require (via concavity on the right) that the derivative be discontinuous at zero. Thus smoothness
of Π(h) precludes left insensitivity. The Pigou monitoring was regular and left insensitive.

We indicated above that with a smooth monitoring technology xt need not be equal to yt.
However for regular monitoring the solution yt to the monitoring cost problem is never smaller
than xt, from the Appendix we have:

Lemma 1. Any monitoring cost minimizing yt satisfies yt ≥ xt. Moreover, in the left insensitive
case the monitoring cost M(xt) is non-increasing.

This says that the incentive constraint on xt forces the choice of monitoring technology yt to
lie to the right of it. That is, the solution lies in the convex part of the Π function.

4.5. Monitoring and Output

Our first result does not depend on the assumption that F is large. We let x̊2(ω2) denote the
optimal second period output (which recall can be status quo, re-optimal or non-cooperative for
different values of ω2). Propositions 1 to 3 of the Appendix imply

Theorem 3. If monitoring is left insensitive or utility separable19 then property (E) holds. More-
over, if x1 is optimal first period output there is ω1 < ωa ≤ ωb < ω such that if ω2 > ωb then
x̊2 < x1 and for generic ψ0 if ω1 ≤ ω2 ≤ ωa then x̊2 ≤ x1.

18The auxiliary function Π+ is needed because the right derivative of Π is undefined at zero when there is a
discontinuity there. By Π′(h) we always mean the left derivative as this is always well-defined.

19It is only for this existence result that separability is needed. While that property holds in our examples, it is
far from necessary for existence, and we discuss this further in the Online Appendix.
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This theorem leaves open the possibility of a gap between ωa and ωb where output is greater
than x1. And indeed our main result is that if there is enough left insensitivity and high bargaining
costs F then it is necessarily the case, that is, property (U) holds.

Theorem 4. If monitoring is left insensitive then property (U) holds. Moreover in the low in-
tervention case of Theorem 3 where ω1 ≤ ω2 ≤ ωa then there is a right neighborhood of ω1 where
x̊2 = x1.

Proof. Left insensitivity forces x1 = y1. Indeed Lemma 1 shows that in general cost minimization
forces x1 ≤ y1; and in the left insensitive case, if x1 < y1 then for violations x1 < xi1 < y1 the
punishment probability does not increase so incentive compatibility fails.

Proposition 2 and Lemma 3 in the Appendix establish that with left insensitivity the status
quo does not change as long as the non-cooperative equilibrium lies to the right (that is xS2 = x1

for D3u(ω2, x1, x1) ≥ 0). This shows that there is a range ω1 ≤ ω2 ≤ ωa where x̊2 = x1 as asserted.
Indeed the status quo is better than non-cooperative by continuity because it is strictly better at
ω1, and better than reoptimizing for F large enough.

Next from Lemma 1 M(xt) is non-increasing, which implies x1 ≥ xf1 . Hence using the assump-
tions D3u(ω, xf1 , x

f
1) ≤ 0 and D31(ωt, x1, x1) < 0 we may define ωSN as the unique solution to

D3u(ωSN , x1, x1) = 0. Because monitoring cost at the status quo is strictly positive the status
quo is strictly worse than the non-cooperative social norm at ωSN ; and since utility from both the
status quo and non-cooperative social norms are continuous in ω2 it follows that there is a left
neighborhood of ωSN in which the non-cooperative social norm is strictly better. Finally, observe
that for ω2 < ωSN we have xN2 > x1 (from D31u(ωt, xt, x

i
t) < 0). This establishes property (U).

4.6. Smooth Monitoring

Left insensitivity is inconsistent with Π(h) being smooth. On the other hand smoothness arises
naturally with measurement errors, so it is not a case we can dismiss. To focus thinking consider
a regular Π(h) and the family of monitoring technologies Π(h/σ). For small σ this amounts to a
“small” additive error. In the limit with small additive error and fixed gross error we approach a
step-function technology, that is a model with left insensitivity. We would like to know that our
result, property (U) in particular, is robust to σ > 0. We extend the idea of Π(h/σ) with small σ
in the following way.

Definition 5. We say that Πn → Π if
(1) Πn and Π are regular, Πn is smooth, and Π is left insensitive and discontinuous
(2) Πn(h) > Π(h) for h < 0 and Πn(h) < Π(h) for h > 0 and
(3) for all ε > 0 the functions Πn converge uniformly to Π on the set |h| ≥ ε.

Part (1) says that the target is a left insensitive discontinuous monitoring technology such as
that in the Pigou section, in the secret sales example, or as in the case of the limit of Π(h/σ). Part
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(2) says that Πn is a noisier technology than Π and since it is smooth can be thought of as Π(h)

plus an additive error with a continuous density. Part (3) says that the additive error is “small.”20

Theorem 5. If F is large, ψ0 not too large, utility is separable and Πn → Π then for sufficiently
large n property (U) holds.

This result is proven as Theorem 8 in the Appendix. It follows from the left insensitive case
Theorem 4 and the following approximation theorem showing that convergence of the monitoring
technology implies convergence of the monitoring cost:

Theorem 6. Suppose that utility is separable and Πn → Π, xn1 → x1 < xN1 . If yn1 is cost minimizing
then yn1 → x1, Πn(xn1 − yn1 ) → π, (Πn)′ (xn1 − yn1 ) → Π > 0 and finite and the monitoring cost
Mn(xn1 )→M(x1).

This is proven as Theorem 7 in the Appendix. The slope condition (Πn)′ (xn1 − yn1 ) → Π

highlights how the smooth Πn is different than Π even for very large n. With small additive error
it is not a good idea to have punishment increasing very rapidly with respect to small violations
of the social norm xn1 : this would lead to frequent “accidental” and costly punishments. Rather
at the social norm punishment should initially be somewhat forgiving to avoid large punishments
for small errors. Notice that with smooth Πn it is necessary that the punishment satisfy the first
order condition, that is Pn (Πn)′ (xn1 − yn1 ) = D3u(ω1, x

n
1 , x

n
1 ). This shows how, in a certain sense,

the problem with a smooth monitoring technology is harder than with left insensitivity: with a left
insensitive monitoring technology the designer need worry only about deviations to higher output,
and in the discontinuous case, only deviations to substantially higher output. By contrast with
a smooth monitoring technology the designer must not choose the punishment too high because
doing so would encourage individuals to deviate to lower output. This highlights a sense in which
left insensitivity is desirable - an increasing probability of punishment for h < 0 simply makes the
mechanism design problem harder.

The fact that the first order condition must be exactly satisfied with a smooth monitoring
technology has a second consequence described in Lemma 3 in the Appendix. It means that when
ω2 > ω1, holding fixed yn1 , P

n
1 , since D3u(ω2, x

n
1 , x

n
1 ) < D3u(ω1, x

n
1 , x

n
1 ) the status quo equilibrium

must shift to the left - it is no longer constant as it is with a left insensitive monitoring technology.
In other words for larger ωt output in the status quo social norm declines: this means that it
may remain better than the non-cooperative norm regardless of the size of the intervention, and
even if there is a switch to the non-cooperative norm the increase in output may not be enough to
raise output above x1.21 The key to proving Theorem 5 is to show that when there is “near” left
insensitivity these things do not happen.

20An alternative would be to assert that for h 6= 0 we have Πn(h) → Π(h), that is, pointwise convergence. In fact
because the functions in question are monotone and bounded this is equivalent to part (3). The uniform condition
obviously implies the pointwise condition. That the converse is true is a technical fact outside the scope of this paper,
but see Levine and Mattozzi (2019).

21We are grateful to a referee who pointed this out in more or less these words.

20



5. Subsidies and Public Goods

From the point of view of behavior, subsidizing a public good is not different from taxing a
negative externality. In this case x represents a reduction in the quantity of public good provided
with x = X being zero provision of the public good and x = 0 maximal provision of the public good.
Increasing ω2 corresponds to increasing the subsidy. Hence Theorems 4 and 5 give conditions under
which a subsidy will lead to increased “non-provision” of the public good x, which is to say reduced
provision. In the case of foreign aid, it is sometimes asserted that subsidies provided by foreign
governments and NGOs do exactly this. A good case study is Bano (2012), based on extensive
fieldwork in Pakistan complemented by survey data.

Bano (2012) examines public goods that were provided through voluntary efforts with socially
provided incentives for contribution. These public goods were primarily welfare related and ranged
from health care and education to the defense of political rights. She conducted a detailed study of
three organizations, the People’s Rights Movement (a political organization), the Edhi Foundation
(the largest welfare organization in Pakistan), and the Jamiat ul Uloom al-Shariah, a madrasa
that provides a free Islamic education to four hundred students. She documents that volunteers
provided public goods not because of altruism or self-signalling but in response to an informal
system of social incentives. As in our model this is based on monitoring: examples include informal
observation of which ambulance service delivered most frequently, and more formal systems such as
the use of receipts to monitor donations. Incentives were social in nature: those who were thought
not to pull their weight received less respect and were less likely to be invited to social events such
as weddings. As can be seen the narrative fits our model.

Subsequently donor organizations attempted to increase public good provision through subsidies
in the form of salaries to contributors. In Bano (2012)’s case studies this led to the unraveling of the
provision of social incentives and to decreased provision of the public good. She first documents
this for four voluntary organizations. In one case she indicates that “[t]he Maternity and Child
Welfare Association... almost collapsed with the influx of such aid.” Similarly six community
based organizations in Sindh engaging primarily in charity and welfare saw a substantial decrease
in provision following the arrival of aid from Oxfam. Finally she discusses the collapse of the
Asthan Latif Welfare Trust after the arrival of UNICEF aid. In each case she demonstrates that
the reduction in public good provision came about because monitoring and social incentives were
abandoned in response to formal incentives and that in the absence of these social incentives
volunteer effort dried up.

The bottom line is that Bano (2012)’s evidence fits our model. A public good was provided
with social incentives (our status quo social norm). A subsidy was introduced (an unanticipated
increase in ω2) and the social incentives ended (reversion to our non-cooperative social norm) and
public good provision declined - as our model predicts.
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6. Conclusion

We have studied self-organization by groups to overcome externalities. We find that unantici-
pated interventions may have counter-intuitive consequences. In particular, adverse circumstances
may cause output to go up rather than down when an existing social norm is abandoned and
non-cooperative behavior takes its place. Never-the-less this may increase welfare.

We identify three conditions under which output increases rather than decreases. First, bar-
gaining cost should be high so that when an intervention takes place it is not worth reaching a new
agreement. Second, the intervention must be of intermediate size. If the intervention is small it is
not worth changing the existing social norm; if it is large even the non-cooperative output will be
less than the original quota. Third, monitoring cost should exhibit approximate left insensitivity.
This means that as long as the status quo is preserved output changes little so that a switch to the
non-cooperative norm leads to an increase in output.

Finally our model has a message for field experiments: it is practical and important to assess
existence of social norms. The presence and role of self organized enforcement before and after an
intervention can be ascertained either by direct observation or by survey. Without such information
we cannot be certain about the policy implications of the response to an intervention.
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Appendix: The General Model

Regularity of utility and monitoring technology is assumed throughout this appendix.

Cost Minimization and the Reoptimal Social Norm

Lemma 2. For fixed ωt,xt ≤ xNt the function ψΠ(xt − yt)Pt has a minimum Mt over incentive
compatible (xt, yt, Pt) and Mt is lower semi-continuous in ωt, xt.

Proof. Recall that incentive compatibility is given by the constraint

u(ωt, xt, xt)− PΠ(xt − yt) ≥ u(ωt, xt, x
i
t)− PΠ(xit − yt).

First we show that for fixed xt ≤ xNt the set of incentive compatible (xt, yt, Pt) is not empty. To
this end define H ≡ sup {h ≤ 0|Π′(h) = 0} (possibly −∞). We have three cases depending on H.
Note that the assumption of regular utility implies that for xt ≤ xNt we have D3u(ωt, xt, xt) ≥ 0.

First H = −∞. In this case take yt = X. The objective u(ωt, xt, x
i
t) − PΠ(xit − yt) is then

smooth and concave in xit so it is sufficient for a feasible solution that D3u(ω1, xt, xt) = PΠ′(xt−yt).
As by construction Π′(xt − yt) 6= 0 take P = D3u(ωt, xt, xt)/Π

′(xt − yt).
Second H = 0. Take yt = xt; then we only have to check incentive compatibility for xit > xt.

If Π is continuous at zero we must have Π+′(0) > 0 because Π is constant for h ≤ 0, Π(h) > Π(0)

and is concave for h > 0. The incentive constraint for rightward deviations may be written as

P ≥ u(ωt, xt, x
i
t)− u(ωt, xt, xt)

Π(xit − yt)−Π(0)
.

In the discontinuous case the right hand side is clearly bounded. In the continuous case this is also
true as there is a finite limit at xit ↓ yt of D3u(ωt, xt, xt)/Π

+′(0). Hence it is possible to choose P
sufficiently large that the constraint is satisfied for all xit.

Third −∞ < H < 0. Choose yt such that H < xt − yt < 0. As in the second part, choose P
sufficiently large that the rightward deviation constraint is satisfied, and we can do so such that
this is true for all H ≤ xt − yt ≤ 0. The leftward constraint is

u(ωt, xt, xt)− u(ωt, xt, x
i
t) ≥ P

(
Π(xt − yt)−Π(xit − yt)

)
and dividing both sides by xt−xit we get D3u(ωt, xt, xt) ≥ PΠ′(xt− yt) in the limit. Consider then
D3u(ωt, xt, xt)/Π

′(xt − yt). As yt ↑ xt −H we have Π′(xt − yt) → 0 continuously. Hence for some
such yt we have D3u(ωt, xt, xt)/Π

′(xt − yt) ≥ P so leftward deviation is unprofitable.
Next we show that the set of incentive compatible (ωt, xt, yt, Pt) is closed, or equivalently that

the correspondence (ωt, xt) 7→ (yt, Pt) has the closed graph property. This directly implies existence
of Mt(xt) and since Π is itself lower semi-continuous that Mt is lower semi-continuous in ωt, xt.

To show the set is closed observe that if Π were continuous this would be immediate. However
Π may be discontinuous at 0. Let (ωnt , x

n
t , y

n
t , P

n
t ) be an incentive compatible sequence converging
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to (ωt, xt, yt, Pt). Suppose first that xt = yt. Since the only discontinuity is at 0 fixing xit it follows
from incentive compatibility that u(ωt, xt, xt)−Pt lim sup Π(xnt − ynt ) ≥ u(ωt, xt, x

i
t)−PtΠ(xit− yt).

Since Π can jump down but not up (lower semi-continuity) we also have lim sup Π(xnt − ynt ) ≥
Π(xt− yt) = Π(0). Hence also u(ωt, xt, x

i
t)−PtΠ(xt− yt) ≥ u(ωt, xt, x

i
t)−PtΠ(xit− yt), the desired

result.
Now suppose that xt 6= yt. A deviation xit 6= yt cannot be profitable by continuity. For

xit = yt there are two cases depending on whether we choose a subsequence converging from the
right or from the left. If ynt ↓ xit the result is implied by left continuity of Π. Finally, if ynt ↑ xit
and u(ωt, xt, xt) − PtΠ(xt − yt) < u(ωt, xt, x

i
t) − PtΠ(xit − yt) then with x̃int ≡ xit − 2(xit − ynt )

we have x̃int − ynt = ynt − xit < 0 so by left continuity of Π and sufficiently large n we have
u(ωnt , x

n
t , x

n
t )−PtΠ(xnt −ynt ) < u(ωnt , x

n
t , x̃

in
t )−PtΠ(x̃int −ynt ) contradicting the fact that we assumed

u(ωnt , x
n
t , x

n
t )− PtΠ(xnt − ynt ) ≥ u(ωnt , x

n
t , x

i
t)− PtΠ(xit − ynt ) for any xit.

Proposition 1. For all ωt ≥ ω1 a reoptimal social norm (xt, yt, Pt) exists and the set of all such
norms is closed.

Proof. Follows directly from objective function u(ωt, xt, xt)−Mt(xt) being upper semi-continuous
given in Lemma 2.

Lemma (Lemma 1 in the text). Any cost minimizing yt satisfies yt ≥ xt. Moreover, in the left
insensitive case the monitoring cost M(xt) is non-increasing.

Proof. Suppose that yt < xt is cost minimizing. From the incentive compatibility of social norms it
follows that u(ωt, xt, xt)− PΠ(xt − yt) = maxxit

[
u(ωt, xt, x

i
t)− PΠ(xit − yt)

]
so that the necessary

first order condition D3u(ωt, xt, xt) = PtΠ
′(xt−yt) must be satisfied. It is tempting to observe that

for xt to the right of yt the objective function ψΠ(xt − yt)D3u(ωt, xt, xt)/Π
′(xt − yt) is decreasing

in yt but this is not helpful since all values of yt may not be feasible. We show how to construct
a ŷt ≥ xt that satisfies incentive compatibility and has strictly lower cost than yt. Specifically, if
Π′(0−) > Π′(xt − yt) we can find a ŷt > xt with D3u(ωt, xt, xt) = PtΠ

′(xt − ŷt) (since Π is smooth
and bounded below at 0) and if Π′(0−) ≤ Π′(xt − yt), take ŷt = xt. We keep the punishment fixed
at Pt. Since necessarily Π(xt − ŷt) < Π(xt − yt), monitoring cost ψPtΠ(xt − ŷt) < ψPtΠ(xt − yt) is
strictly lower. It remains to show that ŷt is in fact incentive compatible. Consider xit ≤ xt, so in
particular xit ≤ ŷt. Then the objective function u(ωt, xt, x

i
t)−PtΠ(xit− ŷt) is concave for xit− ŷt ≤ 0

and the first order condition is satisfied at xit = xt so there can be no profitable deviation to the
left.

Consider a deviation to the right xit > xt. Since yt was incentive compatible we have u(ωt, xt, xt)−
PtΠ(xt − yt) ≥ u(ωt, xt, x

i
t) − PtΠ(xit − yt). We would like to show that the same holds for ŷt. A

sufficient condition is Π(xit−ŷt)−Π(xt−ŷt) ≥ Π(xit−yt)−Π(xt−yt). Write ξ1 = min{xit−xt, ŷt−yt}
and ξ2 = max{0, xit − xt − (ŷt − yt)} observing that xit − xt = ξ1 + ξ2. For ỹt ∈ {yt, ŷt} we have

Π(xit − ỹt)−Π(xt − ỹt) ≥
∫ ξ1+ξ2

0
Π′(h+ xt − ỹt)dh.
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For ỹt = ŷt the inequality may be strict if Π jumps up at zero; for ỹt = yt this must hold with
equality. Hence the sufficient condition will follow from Π′(ξ+ xt− ŷt) ≥ Π′(ξ+ xt− yt) for almost
all 0 ≤ ξ ≤ ξ1 + ξ2.

If ŷt > xt and ξ < ŷt − xt we have Π′(ξ + xt − ŷt) ≥ Π′(xt − ŷt) = Π′(xt − yt) because Π(h) is
convex for h < 0. For 0 ≤ ŷt − xt < ξ ≤ ξ1 we have Π′(ξ + xt − ŷt) ≥ Π′(xt − yt) because Π(h)

is concave for h > 0. Finally, Π′(xt − yt) ≥ Π′(ξ + xt − yt) because xt − yt > 0. This shows that
Π′(ξ + xt − ŷt) ≥ Π′(ξ + xt − yt) for 0 ≤ ξ ≤ ξ1. If ξ2 > 0, then for ξ > ξ1 we have ξ ≥ ŷt − yt
so that ξ + xt − ŷt ≥ xt − yt > 0. Hence Π is concave between ξ + xt − ŷt and ξ + xt − yt giving
Π′(ξ + xt − ŷt) ≥ Π′(ξ + xt − yt).

To show that left insensitivity implies M(xt) is non-increasing we can apply the first result
together with left insensitivity to see that optimal xt = yt and the only incentive constraint is
P
[
Π(hit)−Π(0)

]
≥ u(ωt, xt, xt + hit) − u(ωt, xt, xt) for hit ≥ 0. Moreover, M(xt) = PΠ(0) so

monitoring cost minimization is punishment minimization. By assumption u(ωt, xt, xt + hit) −
u(ωt, xt, xt) is decreasing in xt so it follows that the minimal punishment is non-increasing in xt

which gives the second result.

The Status Quo Social Norm

Lemma 3. If monitoring is left insensitive or utility separable then for any (x1, y1, P1) optimal
with respect to ω1 and for any ω2 ≥ ω1, in 0 ≤ x2 ≤ x1 there is a unique incentive compatible social
norm

(
xL2 , y1, P1

)
. The left status quo, xL2 is either x1 with D3u(ω2, x1, x1)−P1Π

′(x1− y1) > 0 22

or it is the unique solution in 0 ≤ x2 ≤ x1 of D3u(ω2, x2, x2)− P1Π
′(x2 − y1) = 0. xL2 ≤ xN2 and is

decreasing and continuous in ω2. If Π is smooth and ω2 > ω1 then xL2 < x1.

Proof. By Lemma 1 x1 ≤ y1. Hence in 0 ≤ x2 ≤ x1 the function Π(x2 − y1) is smooth so any
incentive compatible social norm (x2, y1, P1) must satisfy the first order condition. Hence we need
only show that a solution exists and is incentive compatible. We have D3u(ω1, x1, x1)− P1Π

′(x1 −
y1) ≥ 0 because it cannot be profitable to deviate to the left at ω1. If this holds with equality define
ω̃2 = ω1. Otherwise there is a unique value ω̃2 > ω1 such that D3u(ω̃2, x1, x1)−P1Π

′(x1− y1) = 0.
Hence for ω2 > ω̃2 we have D3u(ω2, x1, x1) − P1Π

′(x1 − y1) < 0, while for ω̃2 > ω2 > ω1 we have
D3u(ω2, x1, x1)− P1Π

′(x1 − y1) > 0.
Consider g(ω2, x2) ≡ D3u(ω2, x2, x2)−P1Π

′(x2−y1). We have D1g(ω2, x2) = D31u(ω2, x2, x2) <

0 and D2g(ω2, x2) = D32u(ω2, x2, x2) +D33u(ω2, x2, x2)−P1Π
′′(x2− y1) < 0. For ω̃2 ≥ ω2 ≥ ω1 we

have g(ω2, x1) ≥ 0 so the unique solution of the first order condition in [0, x1] is at x1. If ω2 > ω̃2

then g(ω2, x1) < 0 so the first order condition is that either g(ω2, x2) = 0 or that the derivative
should be negative on the left boundary g(ω2, 0) < 0. It follows from the implicit function theorem
that there is a unique solution xL2 of this first order condition and that this solution is decreasing
in ω2. It follows also that it is weakly smaller than xN2 since that solves the same problem with
Π′ ≡ 0.

22We always take Π′(0) to be the left derivative.
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It remains to establish that
(
xL2 , y1, P1

)
is incentive compatible. It is incentive compatible

for deviations xi2 to the left because of concavity and the first order condition being satisfied.
For ω̃2 ≥ ω2 ≥ ω1 it is incentive compatible to the right because the left status quo is at x1 and
D31u(ωt, xt, x

i
t) < 0 implies that the utility gain from deviating to the right is reduced. For ω2 > ω̃2

there are two cases. In the left insensitive case the first order condition requires that xL2 = xN2 which
is certainly incentive compatible to the right.

For the case where ω2 > ω̃2, xL2 > 0 and utility is separable observe that for ω2 ≥ ω̃2 the first
order condition holds with equality D3u(ω2, x

L
2 , x

L
2 ) = P1Π

′(xL2 − y1). From the inverse function
theoremdxL2 /dω2 < 0 and by the convexity of Π(h) for h < 0 we have

D3u(ω2, x
L
2 , x1) < D3u(ω2, x

L
2 , x

L
2 ) = P1Π

′(xL2 − y1) ≤ P1Π
′(x1 − y1) = D3u(ω̃2, x1, x1)

≤ D3u(ω1, x1, x1).

Observe that deviations xi2 ≤ x1 yield no utility gain at ω2, x
L
2 because the objective function

is concave and the first order condition is satisfied. Consider xi2 > x1. We have u(ω2, x
L
2 , x

i
2) −

u(ω2, x
L
2 , x1) =

∫ xi2
x1
D3u(ω2, x

L
2 , ξ)dξ. Since D3u(ω2, x

L
2 , x1) < D3u(ω1, x1, x1) separability enables

us to conclude that D3u(ω2, x
L
2 , ξ) < D3u(ω1, x1, ξ). Hence

u(ω2, x
L
2 , x

i
2)− u(ω2, x

L
2 , x1) <

∫ xi2

x1

D3u(ω1, x1,ξ)dξ = u(ω1, x1, x
i
2)− u(ω1, x1, x1)

≤ P1

[
Π(xi2 − y1)−Π(x1 − y1)

]
.

Moreover, u(ω2, x
L
2 , x1) − u(ω2, x

L
2 , x

L
2 ) ≤ P1

[
Π(x1 − y1)−Π(xL2 − y1)

]
so adding up we have

u(ω2, x
L
2 , x

i
2) − u(ω2, x

L
2 , x

L
2 ) ≤ P1

[
Π(xi2 − y1)−Π(xL2 − y1)

]
which is the required incentive com-

patibility condition.
In case xL2 falls to zero at ω∗ > ω̃2 then note that the argument above is valid for ω∗ and once

xL2 is fixed at zero further increases in ω2 simply increase incentive compatibility to the right.
Finally, if Π is smooth then the first order condition D3u(ω1, x1, x1)− P1Π

′(x1 − y1) = 0 must
be satisfied with equality as must D3u(ω2, x

L
2 , x

L
2 )−P1Π

′(xL2 − y1) = 0, and since D3u(ωt, xt, xt)−
P1Π

′(xt − y1) is decreasing in ωt and in xt for xt ≤ y1 it follows that xL2 < x1.

Proposition 2. If monitoring is left insensitive or utility separable, for any (x1, y1, P1) optimal
with respect to ω1 and for any ω2 ≥ ω1 an incentive compatible social norm (x2, y1, P1) exists and
the set of all such social norms is closed so that there is a status quo social norm. For xL2 ≥ xf2 it
is uniquely given by

(
xL2 , y1, P1

)
.

Proof. Lemma 3 establishes existence of an incentive compatible social norm. Any incentive com-
patible social norm to the right of x1 and less than y1 must satisfy the first order condition with
equality, hence the set is closed. That in turn implies existence of a status quo social norm (that
is optimal within the class of incentive compatible norms). For xL2 ≥ x

f
2 observe that any solution

to the right of xL2 has weakly lower social utility since both xL2 and that solution lie to the right
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of xf2 and the social objective function u(ω2, x2, x2) is concave, and also has strictly higher moni-
toring costs since P1 is fixed and Π(x2 − y1) must strictly increase in moving from non-negative to
positive.

In the proof of Theorem 4 in the text we assert that the last two propositions imply that if Π is
left insensitive and D3u(ω2, x1, x1) ≥ 0 we must have xS2 = x1. To see this observe that in this case
3 implies that xL2 = x1, since for any x2 < x1 the equation D3u(ω2, x2, x2)−P1Π

′(x2− y1) = 0 has
no solution (D3u(ω2, x2, x2) > 0 and Π′(x2 − y1) = 0). Since xf2 < x1 Proposition 2 then implies
xS2 = xL2 .

Partial Monotonicity

Proposition 3. If monitoring is left insensitive or utility separable and x1 is optimal first period
output there is ω1 < ωa ≤ ωb < ω such that when x̊2 is a corresponding optimal second period
output if ω2 > ωb then x̊2 < x1 and for generic ψ0 if ω1 ≤ ω2 ≤ ωa then x̊2 ≤ x1.

Proof. Observe that in the second period we must have x̊2 ≤ xN2 . As xN2 ≥ xf2 and the social
objective function u(ω2, x2, x2) is concave any x2 > xN2 would have no greater social utility and so
would be strictly worse than xN2 if it had any monitoring costs, that is, if it was reoptimal or status
quo.

If ψ0 is so large that the first period solution is non-cooperative simply observe that ω2 ≥ ω1

implies xN2 ≤ xN1 so in fact x̊2 < x1 for all ω2 > ω1. The same applies as soon as ω2 is sufficiently
large that xN2 < x1, giving the ωb result.

Finally, for ω2 sufficiently close to ω1 the fact that F > 0 and reoptimal utility is upper semi-
continuous in ω2 implies that it is not optimal to reoptimize. Moreover, as x1 > xf1 it follows that,
again for ω2 sufficiently close to ω1, that xL2 > xf2 as both are continuous in ω2 so the status quo
social norm involves no higher output than x1 by Proposition 2 and Lemma 3. It remains then
only to rule out the case where at ω1 there was indifference between the reoptimal social norm
and the non-cooperative social norm. As that can happen for only one value of ψ0 this is indeed
non-generic.

Limit Monitoring

Lemma 4. Let vn, wn be sequences with vn → v > 0 and lim inf wn > 0. If Πn → Π and for a
sequence hn < 0 it is the case that (Πn)′ (hn) = wn/vn then we have hn → 0 and Πn(hn)→ π.

Proof. First we establish that for all ε > 0 the functions (Πn)′ converge uniformly to 0 on the set
h < −ε. This directly implies that hn → 0. Since (Πn)′ is nonnegative and increasing it suffices to
show for any ε > 0 we have (Πn)′ (−ε) → 0. To see this, since Πn(−ε) is convex for ε > 0 we may
write Πn(−ε/2) − π ≥ Πn(−ε) − π + (Πn)′ (−ε)ε/2. Since the LHS goes to zero (recall that Π is
left insensitive by Definition 5), Πn(−ε) − π is non-negative, and (Πn)′ (−ε) ≥ 0 by assumption it
follows that (Πn)′ (−ε)→ 0.
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To establish the second assertion, if not then there exists an ε > 0 and a subsequence in which
Πn(hn) > π + ε. Draw the tangent line to Πn at the point hn, it has slope wn/vn and as Πn is
convex for negative h, it lies below Πn there. The tangent line intersects the constant function π
at hn − γn where Πn(hn)− γn (wn/vn) = π, which is to say at γn = [Πn(hn)− π] vn/wn. Consider
then that Πn(hn − γn/2) ≥ π + ε/2, and Πn(−γn/2) ≥ Πn(hn − γn/2) ≥ π + ε/2. Unfortunately
lim γn/2 > 0 so Πn(−γn/2)→ π which is a contradiction.

Lemma 5. If Πn → Π then (Πn)′ (0)→∞.

Proof. This result is driven by Π+(0) > π, which itself follows from definition 5 part 1. Suppose
that there is a subsequence along which (Πn)′ (0) is bounded above by Q. We cannot reconcile
that with the discontinuity in the limit. To see this, choose a further subsequence along which
Πn(0)→ q. There are two cases: if q < Π+(0) then pointwise convergence is violated to the right.
Specifically, define

h =
Π+(0)− q

3Q
.

Then for large enough n we have Πn(h)−q close to Πn(h)−Πn(0) so Πn(h)−q ≤ (1/2) (Π+(0)− q),
while lim inf Πn(h) ≥ Π+(0) a contradiction.

If q = Π+(0) then q > π and pointwise convergence is violated to the left. Specifically, define

h =
π − q
3Q

.

Then for large enough n we have q−Πn(h) ≤ (1/2) (q − π) and therefore π < (1/2) (q + π) ≤ Πn(h)

while lim sup Πn(h) = π, a contradiction.

We use these to show that

Theorem 7. Suppose that Πn → Π, xn1 → x1 < xN1 . If yn1 is cost minimizing then yn1 → x1,
Πn(xn1 − yn1 )→ π, (Πn)′ (xn1 − yn1 )→ Π > 0 and finite and the monitoring cost Mn(xn1 )→M(x1).

Proof. Define P = M(x1)/(ψπ). Since x1 < xN1 we have D3u(ω1, x1, x1) > 0 which implies in
particular that P > 0 (M(x1) must be positive because with no punishment there is strict incentive
to deviate), and for large enough n we have xn1 < xN1 and D3u(ω1, x

n
1 , x

n
1 ) > 0.

Take P̂ > P . By Lemma 5 for all n sufficiently large there exists an hn < 0 with (Πn)′ (hn) >

D3u(ω1, x
n
1 , x

n
1 )/(P/2). Hence we may find a solution ĥn to (Πn)′ (hn) = D3u(ω1, x

n
1 , x

n
1 )/P̂ with

ĥn < 0. By Lemma 4 (applied to the sequences vn = P̂ and wn = D3u(ω1, x
n
1 , x

n
1 )) ĥn → 0

and Πn(ĥn) → π. We claim in fact that for n sufficiently large xn1 , y
n
1 ≡ xn1 − ĥn, P̂ is incentive

compatible for the monitoring technology Πn. This norm is not necessarily cost minimizing but will
serve the purpose of showing that the minimum cost Mn(xn1 )→M(x1).

Observe first that it cannot be optimal to deviate to xi1 ≤ yn1 since the objective function is
concave and the first order condition is satisfied at xn1 . Moreover, it cannot be optimal to deviate
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to an xi1 > yn1 with

D3u(ω1, x
n
1 , x

n
1 )(xi1 − xn1 ) ≤ P̂

(
Πn(xi1 − yn1 )−Πn(xn1 − yn1 )

)
that is with

xi1 − yn1 ≤ P̂
(

Πn(xi1 − yn1 )−Πn(xn1 − yn1 )

D3u(ω1, xn1 , x
n
1 )

)
+ ĥn.

Now for n sufficiently large the RHS is bounded below by π̂ ≡ (1/2)P̂ (Π+(0)−π)/D3u(ω1, x1, x1) >

0. Hence if there is a profitable deviation it must be to xi1 > yn1 + π̂.
Let xin1 be an optimal deviation in the range xi1 ≥ yn1 + π̂. Since P̂ > P and xi1 ≥ yn1 + π̂ we

know - since Π(0) = π - that

u(ω1, x1, x
in
1 )− u(ω1, x1, x1)− P̂

(
Π(xin1 − x1)− π

)
≤ −ε < 0.

Hence since u is uniformly continuous and Π is for xi1 ≥ yn1 + π̂ we have

lim sup
[
u(ω1, x

n
1 , x

in
1 )− u(ω1, x

n
1 , x

n
1 )− P̂

(
Π(xin1 − yn1 )−Π(xn1 − yn1 )

)]
≤ −ε.

For xi1 ≥ yn1 + π̂ we also know that Πn converges uniformly to Π so

lim sup
[
u(ω1, x

n
1 , x

in
1 )− u(ω1, x

n
1 , x

n
1 )− P̂

(
Πn(xin1 − yn1 )−Πn(xn1 − yn1 )

)]
≤ −ε.

Hence for large enough n the deviation xin1 is not profitable.
Observe that along this sequence monitoring cost is by construction Mn

P̂
(xn1 ) = ψΠn(ĥn)P̂ →

ψπP̂ . Since the least monitoring cost Mn(xn1 ) ≤ Mn
P̂

(xn1 ) and P̂ > P was arbitrary we must
have lim supMn(xn1 ) ≤ ψπP = M(x1). Moreover since the Πn technology is strictly inferior to
the Π technology (part (2) of Definition 5), we have Mn(xn1 ) ≥ M(xn1 ) and since M is lower
semi-continuous, the fact that for n large enough M(xn1 ) ≤ Mn(xn1 ) ≤ M(x1) implies in fact that
Mn(xn1 ) → M(x1) as asserted. The convergence of (Πn)′ (xn1 − yn1 ) → Π > 0 follows directly from
the convergence of monitoring cost and the first order condition.

For the rest, let Pn be a cost minimizing punishment corresponding to the optimal ŷn1 . Observe
that Πn(xn1 − ŷn1 ) ≥ π. As we have just shown, monitoring cost must converge to ψπP , and this
implies that Pn is bounded above and away from zero. Hence we may extract a subsequence along
which Pn → P > 0. From Lemma 1 we have xn1 ≤ ŷn1 . Since Π is discontinuous at 0 the first
order condition (Πn)′ (xn1 − ŷn1 ) = D3(ω1, x

n
1 , x

n
1 )/Pn implies that in fact xn1 < ŷn1 (since otherwise

from Lemma 5 the slope would go to infinity). We may then apply Lemma 4 to reach the desired
conclusion that ŷn1 → x1 and Πn(xn1 − yn1 )→ π.

Lemma 6. Suppose that utility is separable and Πn → Π, xn1 → x1 with xf1 ≤ x1 < xN1 and that yn1
is cost minimizing with corresponding punishment Pn1 . Fix ω2 > ω1 such that xN2 > x1. Then the
status quo xSn2 → x1 and ψPn1 Πn(xSn2 − yn1 )→M(x1).
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Proof. It suffices to prove the result for xLn2 the left status quo: if xLn2 → x1 since x1 ≥ xf1 > xf2
then Proposition 2 implies that for large enough n the left status quo is the unique status quo.

From the first order condition Pn1 = D3u(ω1, x
n
1 , x

n
1 )/ (Πn)′ (xn1 − yn1 ) → D3u(ω1, x1, x1)/Π

by Theorem 7. By definition xLn2 ≤ xn1 so D3u(ω2, x
Ln
2 , xLn2 ) ≥ D3u(ω2, x

n
1 , x

n
1 ). Moreover

D3u(ω2, x1, x1) > 0 (fromx1 < xN2 ) and D3u(ω2, x
n
1 , x

n
1 ) → D3u(ω2, x1, x1) so D3u(ω2, x

Ln
2 , xLn2 ) is

bounded away from zero. From Lemma 3 we have xLn2 < xn1 ≤ yn1 and since (Πn)′ (xLn2 − yn1 ) =

D3u(ω2, x
Ln
2 , xLn2 )/Pn1 we may apply Lemma 4 to get xLn2 → x1 and Πn(xLn2 − yn1 )→ π .

By Lemma 7 we also have Πn(xn1−yn1 )→ π and ψPn1 Πn(xn1−yn1 )→M(x1). Hence ψPn1 Πn(xLn2 −
yn1 )→M(x1).

Definition 6. Property (V) is said to hold at (x1, y1, P1) incentive compatible with respect to ω1

if there exists an ω2 > ω1 such that xN2 > x1 and the non-cooperative social norm is strictly better
than any status quo social norm (x2, y1, P1).

Lemma 7. Suppose that utility is separable and Πn → Π, xn1 → x1 with xf1 ≤ x1 < xN1 and that
yn1 is cost minimizing with corresponding punishment Pn1 . Then for all sufficiently large n property
(V) is satisfied at (xn1 , y

n
1 , P

n
1 ).

Proof. Let ωSN2 be the unique solution of D3u(ωSN2 , x1, x1) = 0. Then there exists a ωSN2 > ω2 > ω1

such that property (V) holds for Π at (x1, y1, P1): the proof is identical to that of Theorem 4. This
is to say that u(ωSN2 , x1, x1)−M(x1) < u(ωSN2 , xN2 , x

N
2 ). From Lemma 6 and the continuity of u the

utility from the status quo at n given by u(ωSN2 , xSn2 , xSn2 )−ψPn1 Πn(xSn2 − yn1 )→ u(ωSN2 , x1, x1)−
M(x1) giving the desired result.

The next two lemmas show that xN1 > lim supxn1 ≥ lim inf xn1 ≥ xf1 . The argument is that this
is true in the limit for Π so by Theorem 7 holds for sufficiently large n.

Lemma 8. Suppose that Πn → Π. Then for every ω1 and any (xn1 , y
n
1 , P

n
1 ) optimal with respect to

ω1 we have lim inf xn1 ≥ x
f
1 .

Proof. If not we can find a sequence (xn1 , y
n
1 , P

n
1 ) optimal with respect to ω1 with limxn1 = x1 <

xf1 . By Theorem 7 this implies Mn(xn1 ) → M(x1) and Mn(xf1) → M(xf1). Hence it must be
that u(ω1, x1, x1) −M(x1) ≥ u(ω1, x

f
1 , x

f
1) −M(xf1), and since u(ω1, x

f
1 , x

f
1) > u(ω1, x1, x1) that

M(xf1) > M(x1). Consider a cost minimizing y1, P1 at x1. Then y1 = x1 since Π is left insensitive,
and for xi1 > xf1we have

P1

(
Π(xi1 − x

f
1)− π

)
≥ u(ω1, x1, x

i
1 − (xf1 − x1))− u(ω1, x1, x1)

≥ u(ω1, x
f
1 , x

i
1 − (xf1 − x1) + (xf1 − x1))− u(ω1, x

f
1 , x

f
1)

= u(ω1, x
f
1 , x

i
1)− u(ω1, x

f
1 , x

f
1)

(the second inequality from D33u(ωt, xt, xt) +D23u(ωt, xt, xt) < 0) we see that in fact xf1 , x
f
1 , P1 is

incentive compatible. Then M(xf1) > M(x1) = ψπP1 ≥M(xf1) a contradiction.
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Lemma 9. Suppose that Πn → Π. Then for every ω1 and any (xn1 , y
n
1 , P

n
1 ) optimal with respect to

ω1 we have lim supxn1 < xN1 .

Proof. Certainly xn1 ≤ xN1 for if xn1 > xN1 social welfare would strictly increase and monitoring cost
would be at the minimum of zero by moving to xN1 . Suppose in fact that for some subsequence
limxn1 = xN1 . By Lemma 7 this implies Mn(xn1 ) → 0. Letting uRn1 be the optimal utility we have
so uRn1 → uN1 .

Now consider Π. Set

P1 =
1

Π+(0)− π

(
max

X≥xi1≥x1
u(ω1, x1, x

i
1)− u(ω1, x1, x1)

)

so that x1, y1 = x1, P1 is incentive compatible. Then the maximum social utility is bounded below
by v(x1) = u(ω1, x1, x1) − ψP1π where v(xN1 ) = uN1 (at x1 = xN1 we have P1 = 0). Moreover
v′(xN1 ) = D2u(ω1, x

N
1 , x

N
1 ) + D3u(ω1, x

N
1 , x

N
1 ) < 0 since xN1 > xf1 . Hence there is x1 < xN1 and

ε > 0 with u(ω1, x1, x1)−M(x1) > uN1 +ε. However by Theorem 7 we haveMn(x1)→M(x1) so for
all large enough n it must be that u(ω1, x1, x1)−Mn(x1) > uN1 + ε/2 contradicting uRn1 → uN1 .

Theorem 8. If F is large, ψ0 not too large, utility is separable and Πn → Π then for sufficiently
large n property (U) holds.

Proof. We need only show that property (V) holds for all sufficiently large n and all correspond-
ing optimal first period optimal norms (for F large enough reoptimizing is out of the question):
continuity of utility with respect to the status quo and non-cooperative social norms yields the
desired range. Hence if the result fails there must be a sequence along which property (V) fails.
Then extract a subsequence with xn1 converging to x1 and apply Lemmas 8, 9 and 7 to get a
contradiction.
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Online Appendix: Pigou

The monitoring technology is Π(xit − yt) = π > 0 if xit ≤ yt and Π(xit − yt) = πB > π if xit > yt.
As in the text θ = π/(πB − π), and the punishment cost parameters are ψ0 = 0 and ψ = 1.

We shall repeatedly use the fact that the solution of a quadratic optimization problem Axt −
(B/2)(xt)

2 = xt [A− (B/2)xt] is given by xt = A/B and the resulting optimum is A2/(2B).
Individual direct utility is U(xit) = (V + 1)xit − (V/2)(xit)

2 up to the satiation point X =

(V + 1)/V . Overall individual utility is

u(ωt, xt, x
i
t) = U(xit)− ωtxit − (1− αωt)xt

= (V + 1− ωt)xit − (V/2)(xit)
2 − (1− αωt)xt.

The first best xf is defined as the maximum of

u(ωt, xt, xt) = (V + 1− ωt)xt − (V/2)(xt)
2 − (1− αωt)xt

= xt [(V − (1− α)ωt)− (V/2)xt] .

We always assume ωt ≤ 1/α which will be seen to imply that xNt ≥ xft and ωt ≤ V/(1 − α)

which will imply that xft ≥ 0.

Proposition 4. The first best is xft = (V − (1 − α)ωt)/V with corresponding welfare uft = (V −
(1− α)ωt)

2/(2V ).

When α = 1 this is the called the Pigouvian solution and is xP = 1 with corresponding welfare
uP = V/2. The Pigouvian tax is U ′(xP ) = 1. Note that as indicated for ωt ≤ V/(1 − α) this is
non-negative.

Proposition 5. The individual optimum in the absence of penalty - that is the maximum of
u(ωt, xt, x

i
t) with respect to xit - is xBt = (V + 1 − ωt)/V with utility uBt (ωt, xt, x

B
t ) = (V + 1 −

ωt)
2/(2V )− (1− αωt)xt.

As the optimum is independent of xt this is also the noncooperative social norm: xNt = xBt .

Proposition 6. The noncooperative social norm has xNt = (V + 1 − ωt)/V with corresponding
welfare

uNt = u(ωt, x
N
t , x

N
t ) =

[
V

2
− 1

2V

]
+

[
α(V + 1)− V

V

]
ωt +

[
1− 2α

2V

]
ω2
t .

For ωt ≤ ω ≡ 1/α it is xNt ≥ x
f
t .

Proof. The value of uN is given by direct computation of

u(ωt, x
N , xN ) = (V + 1− ωt)2/(2V )− (1− αωt)(V + 1− ωt)/V.

Similar elementary computation gives xNt ≥ x
f
t if and only if ωt ≤ 1/α.
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Given ωt and a quota yt = xt made incentive compatible by punishment

Pt =
[
u(ωt, xt, x

B
t )− u(ωt, xt, xt)

]
/(πB − π)

yields monitoring cost πPt hence social utility

u(ωt, xt, xt)− θ
[
u(ωt, xt, x

B
t )− u(ωt, xt, xt)

]
.

We have denoted by “re-optimal” the norm maximizing this function.

Proposition 7. The re-optimal social norm has

xRt =
(1 + θ)V + θ − (1 + θ − α)ωt

V (1 + θ)

when this is non-negative and the corresponding welfare is

uRt =

[
V

2
− 1

2V

θ

1 + θ

]
+

[
α

V

θ

1 + θ
− (1− α)

]
ωt +

1

2V

1

1 + θ

[
(1− α)2 + θ(1− 2α)

]
ω2
t

= uNt +
1

2V

1

1 + θ
(1− αωt)2 .

Proof. The objective function is

u(ωt, xt, xt)− θ
[
u(ωt, xt, x

B)− u(ωt, xt, xt)
]

= (1 + θ)u(ωt, xt, xt)− θu(ωt, xt, x
B)

=(1 + θ)xt [(V − (1− α)ωt)− (V/2)xt]− θ
[
(V + 1− ωt)2/(2V )− (1− αωt)xt

]
=xt [(1 + θ)(V − (1− α)ωt)− (1 + θ)(V/2)xt + θ(1− αωt)]− θ(V + 1− ωt)2/(2V )

=xt [(1 + θ)(V − (1− α)ωt) + θ(1− αωt)− (1 + θ)(V/2)xt]− θ(V + 1− ωt)2/(2V )

=xt [(1 + θ)V + θ − (1− α+ θ)ωt − (1 + θ)(V/2)xt]− θ(V + 1− ωt)2/(2V )

whence xRt . As to uRt we have

uRt =
((1 + θ)V + θ − (1− α+ θ)ωt)

2

2(1 + θ)V
− θ(V + 1− ωt)2

2V

=
1

2(1 + θ)V

[
((1 + θ)V + θ − (1− α+ θ)ωt)

2 − θ(1 + θ)(V + 1− ωt)2
]

=
1

2(1 + θ)V

[
((1 + θ)V + θ)2 − 2 ((1 + θ)V + θ) (1 + θ − α)ωt

+ (1 + θ − α)2 ω2
t − θ(1 + θ)

(
(V + 1)2 − 2(V + 1)ωt + ω2

t

)]
=

1

2V

1

1 + θ

[
((1 + θ)V + θ)2 − 2 ((1 + θ)V + θ) (1 + θ − α)ωt

+ (1 + θ − α)2 ω2
t − θ(1 + θ)

(
(V + 1)2 − 2(V + 1)ωt + ω2

t

)]
.

We examine the constant, linear, and quadratic coefficients separately to get the expression in the
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Theorem. The constant term is

1

2(1 + θ)V

[
((1 + θ)V + θ)2 − θ(1 + θ) (V + 1)2

]
=

1

2(1 + θ)V

[
(1 + θ)2V 2 + 2θ(1 + θ)V + θ2 − (1 + θ)θ

(
V 2 + 2V + 1

)]
=

1

2(1 + θ)V

[(
(1 + θ)2 − (1 + θ)θ

)
V 2 + θ2 − (1 + θ)θ

]
=

1

2(1 + θ)V

[
(1 + θ)V 2 − θ

]
=
V

2
− 1

2V

θ

1 + θ

The linear coefficient is

1

2V

1

1 + θ
[−2 ((1 + θ)V + θ) (1 + θ − α) + 2θ(1 + θ)(V + 1)]

=
1

V

1

1 + θ
[((1 + θ)V + θ) (α− (1 + θ)) + θ(1 + θ)(V + 1)]

=
1

V

1

1 + θ
[α ((1 + θ)V + θ)− (1 + θ)V ] =

α ((1 + θ)V + θ)

(1 + θ)V
− 1

=
α

V

θ

1 + θ
− (1− α)

The quadratic coefficient is

1

2V

1

1 + θ

[
(1 + θ − α)2 − θ(1 + θ)

]
=

1

2V

1

1 + θ

[
(1− α)2 + θ(1− 2α)

]
.

These give uR as in the statement. Lastly we compute uR − uN . Recall that uN =
[
V
2 −

1
2V

]
+[

α(V+1)−V
V

]
ωt +

[
1−2α
2V

]
ω2
t . The difference in the constants is

V

2
− 1

2V

θ

1 + θ
−
[
V

2
− 1

2V

]
= − 1

2V

θ

1 + θ
+

1

2V
=

1

2V

1

1 + θ

For the linear coefficients we have

α

V

θ

1 + θ
− (1− α)−

[
α(V + 1)− V

V

]
=
α

V

θ

1 + θ
− α

V
= −α

V

1

1 + θ

and for the quadratic

1

2V

1

1 + θ

[
(1− α)2 + θ(1− 2α)

]
−
[

1− 2α

2V

]
=

1

2V

1

1 + θ

[
(1− α)2 + θ(1− 2α)− (1− 2α) (1 + θ)

]
=

1

2V

1

1 + θ
· α2

36



Therefore

uR − uN =
1

2V

1

1 + θ
− α

V

1

1 + θ
ωt +

1

2V

1

1 + θ
α2ω2

t

=
1

2V

1

1 + θ
− 1

2V

1

1 + θ
2αωt +

1

2V

1

1 + θ
(αωt)

2

=
1

2V

1

1 + θ
(1− αω)2

as claimed.

We verify a claim made in the text:

Proposition 8. xN1 > x1 > xN2 (ω2) when ω2 = 1/α

Proof. The inequality xN1 > x1 reads

V + 1− ωt
V

>
(1 + θ)V + θ − (1 + θ − α)ω1

(1 + θ)V

that is
1− ωt >

θ − (1 + θ − α)ω1

(1 + θ)

At ω2 = ω1 this is

−(1 + θ)ω1 > −1− (1 + θ − α)ω1

1 > (1 + θ)ω1 − (1 + θ − α)ω1 = αω1

which is true. At ω2 = 1/α the reverse inequality xN < x1 reads

−1− α
α

= 1− 1

α
<
θ − (1− α+ θ)ω1

(1 + θ)

−1− α
α

<
θ − (1− α+ θ)ω1

(1 + θ)

where the right hand side is larger than

αθ − (1− α+ θ)

α(1 + θ)
=
αθ − (1− α)− θ

α(1 + θ)
= −1− α

α

so in fact xN2 < x1 when ω2 = 1/α.

Online Appendix: Separability

The sole use of the separability condition is to prove the existence of a status quo social norm
when monitoring fails to be left insensitive. However, separability is much stronger than is required
for this result, and the purpose of this Appendix is to discuss what is needed.
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The crucial inequality in the proof (Lemma 3 in the text) is

u(ω2, x
L
2 , x

i
2)− u(ω2, x

L
2 , x1) < u(ω1, x1, x

i
2)− u(ω1, x1, x1)

for xi2 > x1, that is ∫ xi2

x1

D3u(ω2, x
L
2 , ξ)dξ <

∫ xi2

x1

D3u(ω1, x1,ξ)dξ.

It is shown in the proof that D3u(ω2, x
L
2 , x1) < D3u(ω1, x1, x1) so that the integrand on the

left starts below the one on the right. Separability implies that the curves D3u(ω1, x1, ξ) and
D3u(ω2, x

L
2 , ξ) are parallel, as in the figure below

D3u(ω1, x1, ξ)

D3u(ω2, x
L
2 , ξ)

ξx̂2 x̂1x1

where

x̂1 = arg max
ξ
u(ω1, x1, ξ) ≡ xB1 x̂2 = arg max

ξ
u(ω2, x

L
2 , ξ).

This makes the needed integral inequality clearly valid. On the other hand it is equally
clear that this condition is not strictly needed. Indeed if for example D331u(ωt, xt, x

i
t) ≤ 0 and

D332u(ωt, xt, x
i
t) ≥ 0 then D3u(ω2, x

L
2 , ξ) has a steeper downward slope than D3u(ω1, x1, ξ), so this

also would suffice.
But even if not, all that is needed is that the yellow area is larger than the purple one in the

figure below:

D3u(ω1, x1, ξ)

D3u(ω2, x
L
2 , ξ)

ξx̂2x̂1x1

Overall, there is a substantial range and scope of utility functions for which the desired conclu-
sion will hold.
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